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Abstract 
 

Traditionally, information collection for water quality management has been 

focused on biological data to describe environmental conditions, and stressor-condition-

response relationships.  While this kind of information is essential, other types of 

information – e.g., economic information about the benefits and costs of alternative 

policy actions – may be equally important for efficient management.  

In this dissertation, I examine the performance of alternative strategies for 

managing ecological risks related to nutrient pollution in the Susquehanna River Basin 

(SRB) under alternative economic and ecological information structures. The SRB is the 

major source of nutrient pollution and related ecological damages in the Chesapeake Bay. 

The water quality management strategies are differentiated by nutrient reduction targets 

for subwatersheds of the SRB, and the environmental instruments used to pursue these 

goals. I define performance as the expected net benefits (pollution control benefits less 

costs) achieved by the strategies.  The analysis allows me to estimate how the reduction 

of economic and ecological uncertainty can influence the optimal design of the strategies, 

and also estimate the value of different types of information in improving the 

performance of the strategies.    

The study is based on a coupled numerical economic-biophysical model. 

Uncertainty is modeled by randomizing the values of model parameters using Monte 

Carlo simulation techniques.  The results show that the value of all types of information 

is strongly dependent on the policy instruments used in water quality management. I also 

find that information about the economic benefits of pollution reductions has the highest 

value regardless of the management strategies.  The value of information and policy 
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performance results are sensitive to the assumptions about the functional forms and initial 

amount of information available to water quality managers.  However, the relative 

performance of alternative policy instruments and relative ranking of information 

collection strategies are independent from the assumptions.   
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Chapter 1. Introduction 
 

Every day the world around us brings surprises.  They can be nice, as in winning a 

lottery, or not very pleasant, as in a farmer losing a crop to hail, or finding that a newly 

purchased car is a “lemon.”  However, the fact that we don’t have perfect foresight about 

the weather, the mechanical status of our cars, or other events that may influence our 

circumstances does not exempt us from making decisions with uncertain outcomes.  To 

make better decisions, we seek information from weather forecasts, auto mechanics, and 

other sources to reduce our uncertainty.   

The necessity of making decisions with imperfect information is a feature not 

only of our individual daily lives, but also of collective decision-making about public 

goods.  And public decision makers, like individuals, must balance the benefits of 

additional information for decision making against the costs.  For example, the possible 

effects of climate change on ecological and economic components of societal welfare are 

extremely uncertain.  Our projections of the changes in local climates, terrestrial and 

aquatic ecosystems, freshwater and food supply, extreme weather events and sea level 

rise are inaccurate due to the lack of reliable data and imperfect understanding of the 

global environmental processes.  In addition, the costs of the greenhouse gas emission 

control are not perfectly known by the regulator.  The costs depend on private decisions 

of polluters and are only privately known [Nordhause and Pope 1997].  Collecting better 

information about the timing, scope, impacts, damages, and potential costs of abating 

would assist the policy decisions by giving better understanding of costs and benefits 

associated with alternative policy actions.  However, information gathering is an 
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expensive and time-consuming task.  Accordingly, the priority directions for data 

gathering and research should be selected based on comparison of the costs of data 

collection with the payoffs in terms of improved economic performance of regulation.    

Another important contemporary example is decision making for water quality 

protection.  Water pollution causes significant societal losses due to damaged fish and 

wildlife resources, human health hazards, and losses of recreational opportunities.  

However, imperfect information about costs and benefits can complicate policy decisions 

to protect and restore water resources.  This has become very apparent to water quality 

managers in the U.S. in recent years, as they have struggled to comply with the U.S. 

Environmental Protection Agency’s (EPA’s) Total Maximum Daily Load (TMDL) 

regulations.  The 1972 Clean Water Act established water quality goals (“fishable and 

swimmable” conditions in all navigable waters) and a regulatory framework for 

achieving them (technology based discharge standards for point sources).  The 

regulations are credited with reducing discharges from point sources and improving water 

quality.   However, significant water quality problems remain in many regions of the 

nation, often because measures were not taken to reduce pollution loads from nonpoint 

sources (NPS), such as agriculture, urban developments and atmospheric deposition.  The 

major initiative to remedy the nation’s water quality problems is the TMDL program.   It 

was initiated in 1992 in response to law suits demanding that EPA enforce Section 303d 

of Clean Water Act, which requires additional pollution control measures when existing 

technologically-based regulations do not achieve water quality targets.  EPA’s TMDL 

regulations require states to list waters that are not meeting water quality criteria.  For 

each listed water body, the states must identify the amount by which pollution loads from 
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different sources must be reduced to meet the standards, and to develop and implement 

plans to achieve the load reductions [NRC 2000].  The states were to accomplish this task 

in 8 to 13 years.   In July 2001, the U.S. EPA announced a delayed in the implementation 

of the Total Maximum Daily Load final rulemaking for 18 months [NRC 2000, Pfleger 

2001] because of the enormous problems states were encountering in meeting the 

mandate.  The slow progress has been attributed in large degree to the fact that key 

information for assessing the condition of streams, lakes, and estuaries, developing 

sensible plans to restore impaired waters was unavailable and costly to obtain [NRC 

2000]. 

In this research, I examine the problem of controlling water pollution loads from 

agricultural nonpoint sources as an environmental policy design problem in which the 

objective is to select a nonpoint source pollution control instrument (e.g., tradable permits 

or taxes for nitrogen fertilizer application) that is expected to bring the highest benefits to 

the society.  The choice must be made with imperfect information about economic and 

biophysical relationships.  The expected improvement in policy performance due to 

information collection (the value of information) is compared for alternative information 

types and policy designs.   
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1.1 Agricultural nonpoint source regulation 
The basis of water quality regulation in US is the Clean Water Act (CWA), which 

was passed in 1972.  Section 402 of the CWA establishes the National Pollutant 

Discharge Elimination System (NPDES) to control point sources of pollution (PS).  

Under the system, PS are required to have permits in order to discharge pollutants into 

surface waters.  The discharge limits are based on technological or water quality 

standards.  Although NPDES has achieved significant reductions in pollution discharges, 

water quality goals have not been met in many cases because nonpoint pollution load has 

not been reduced [Ribaudo 2001, US EPA 2003a, Folmer et. al. 1995, US EPA 2003b].   

The CWA established no comparable regulations for agriculture and other 

nonpoint sources (NPS).  Instead, the Act shifted responsibility for NPS to the states.  

The states largely choose voluntary compliance approaches (such as education, research 

and development, and green payments), which have had limited impact on nonpoint 

pollution load.  The focus on voluntary approach is due in part to the difficulties involved 

with designing and administering environmental policies for agriculture, which are often 

cause by deficiencies in reliable data about the environmental impacts of individual NPS 

[Ribaudo et. al. 1999]. It is also due to the political influence of agricultural producers, 

who prefer voluntary measures to enforceable instruments that induce changes in 

production and pollution practices and usually increase costs of production [Horan et. al. 

2001].   

Furthermore, the costs of achieving water quality improvements could have been 

substantially smaller [Freeman 1982].  Since the NPDES emphasizes uniform technology 

based effluent standards, little flexibility was allowed for achieving pollution reductions 
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at least cost either through allocation among alternative PS, or between PS and NPS 

[Folmer et. al. 1995].   

Remaining water quality problems attract a lot of interest of general public, 

policy-makers and scientists to the question of developing sound environmental policies 

that would target both NPS and reduce water pollution cost-effectively.  However, NPS 

regulation is a challenging task.  It requires implementing new approaches that take into 

consideration unique characteristics of nonpoint pollution, such as: a) impossibility to 

monitor individual runoff due to diffuse nature of pollution; b) weather-related 

variability; c) variation over geographic scope; c) difficulties in measuring economic 

damages caused by pollution [Ribaudo et. al. 1999]. 

 Policymakers have a menu of policy tools available for addressing NPS 

pollution, such as economic incentives, standards, and liability rules.  Which ones are 

most appropriate depends on a number of economic considerations, including how well 

the instrument achieves the policy goals, the costs of pollution control, monitoring and 

enforcement costs, and the ability of regulation to adjust to different economic and 

physical conditions [Ribaudo et. al. 1999]. 

 

1.2. Design of NPS pollution regulation 
Adopting the framework suggested by [Shortle and Horan 2001], developing NPS 

regulation involves the choices of a) criteria for evaluating environmental and economic 

performance (e.g., the difference between economic benefits and costs of regulation); b) a 

subset of polluters who are responsible for environmental degradation and who can be 

easily monitored and controlled (whom to target?); c) the indicators to judge polluters’ 
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environmental performances (what to target?); d) policy instrument to induce polluters to 

improve their environmental performance (which instrument to use?).  Each of the 

choices depends on the information available to water quality managers, and in turn, 

determines the information requirements for policy design. 

1.2.1. Decision criteria 
A decision criterion is required to rank the policies based on their outcomes.  

There are a number of criteria that can be used to judge environmental policies based on 

environmental and/or economic considerations.  I focus on economic criteria.    

Two commonly used economic criteria to judge the policy decisions are 1) the 

maximization of net benefits and 2) the least-cost achievement of environmental 

objectives.  The former criterion implies choosing the regulation that maximizes the 

difference between the economic benefits of economic activity and the costs of resulting 

environmental damages.  In the case of uncertainty, the concept is generalized to compare 

expected benefits and costs [Baumol and Oates 1988, Shortle 1986].  Alternatively, the 

environmental objectives can be selected based on non-economic criteria.  In this case, 

alternative policy decisions evaluated with respect to their cost-effectiveness [Baumol 

and Oates 1988].  The environmental objective can be chosen by agreement among all 

the affected parties, or by ecological considerations, such as protection of endangered 

species with no known economic value.  Applying the second criteria reduces the policy 

information requirements by eliminating the need in the data about the economic costs of 

environmental degradation.      
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1.2.2. Whom to regulate? 
The decision about whom to regulate involves two choices: 1) the selection of a 

subset of suspected polluters to regulate (spatial scope); and 2) the decision about how 

similar or different the selected polluters will be addressed (spatial differentiation).   

Consider the first choice.  The diffuse nature of the NPS pollution makes it 

expensive to monitor individual emissions and creates the uncertainty about individual 

loadings.  Expanding the set of the polluters under regulation results in the increase in the 

costs of pollution monitoring and policy enforcement [Shortle and Horan 2000].  On the 

other hands, targeting a small set of polluters implies higher burden on each of them in 

order to achieve pollution reduction objective, than in the case when all polluters are 

regulated.  This burden can be reduced by re-distribution of pollution reductions if more 

polluters are controlled, thus reducing the costs of regulation [Shortle and Abler 1995, 

Shortle and Horan 2000].  In other words, there is a trade-off between the costs of 

achieving environmental objective, and the costs of monitoring (i.e. information 

collection) and policy enforcement.   

Now, consider the choice of policy spatial differentiation.  The characteristics of 

NPS pollution vary by location due to the great variety of farming practices, land forms, 

climate, and hydrologic characteristics found across even relatively small area [Ribaudo 

et. al. 1999].  Economically optimal regulation would be unique for each polluter 

depending on her pollution abatement costs and environmental impacts [Ribaudo et. 

al.1999].  However, such policy requires polluter-specific information, which is usually 

costly to collect.  To reduce the costs of data gathering, the same (uniform) regulation can 

be imposed to all polluters.  That is, the decision about the degree of policy 
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differentiation among polluters involves balancing of policy economic efficiency and the 

costs of information collection.   

Limited studies have addressed the issues of polluters’ targeting and policy 

differentiation.  These studies will be reviews in the subsequent chapters.   

1.2.3. What to target? 
Economically and ecologically justified candidates for the measuring and 

regulating polluters’ environmental impacts will be 1) correlated with environmental 

conditions, 2) enforceable, and 3) targetable in time and space [Braden and Segerson 

1993, Shortle and Horan 2001].  Emission is one of the most commonly discussed bases 

for regulation, especially in the context of PS control, due to its high correlation with 

environmental impacts of individual polluters.  However, in the case of NPS pollutions, 

emissions of individual producers are prohibitively costly to monitor and control. That is 

this indicator is not easily targetable and enforceable [Shortle and Horan 2001].   

Alternatively, environmental policy could be based on monitoring of ambient 

water quality, which well characterizes the overall environmental impacts of economic 

activities in a watershed.  However, NPS pollution enters water systems over a broad 

front and is affected by stochastic natural processes (such as weather), which prevents 

identification of individual pollution sources.  That is, the indicator is often poorly 

correlated with environmental impacts of individual polluters and do not send a clear 

signal to polluters of how to improve their environmental performance [Ribaudo et. al. 

1999].   

Another option, which is often discussed in the context of NPS control, is the 

regulation of inputs, which directly influence pollution runoff (e.g., fertilizer use) 
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[Shortle and Horan 2001].  Using production inputs as an indicator of polluters’ 

environmental performance can significantly reduce the costs of pollution monitoring, 

given that the input use is observable.  Unfortunately, only some production inputs are 

purchased on the markets and can be easily monitored (e.g., fertilizer of land purchases).  

Others (such as timing and location of fertilizer application) can be very costly to 

monitor, target and enforce.   

 
 

1.2.4. Which instrument to use?  
Economic theory describes a variety of policy instruments that can be used to 

induce the pollution reductions (e.g., standards, taxes, or tradable permits) [Shortle and 

Horan 2001].  The instruments can be divided into economic incentives and command-

and-control mechanisms [Ribaudo et. al.1999].  Economic incentive-based instruments, 

such as taxes or subsidies, are used by policy makers to create prices for negative 

environmental impacts (i.e., economic damages), so that producers have incentives to 

control pollution at socially desirable levels [Ribaudo et. al. 1999].  Command-and-

control approach sets standards for producers’ behavior (e.g., prescribes a technology or 

specified level of fertilizer use) [Ribaudo et. al. 1999].   

Under perfect information, different policy instruments often can be designed to 

achieve the same expected net benefits [Shortle and Horan 2001].  Accordingly, the 

instruments will have the same ranking given the economic efficiency criterion.  To the 

contrast, with uncertainty, the mechanisms often produce different economic and 

ecological outcomes [Weitzman 1974, Baumole and Oates 1988].  Although the ranking 

of policy instruments under uncertainty has been the focus of the economic studies for 30 
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years, a little guidance is provided for selecting the policy instruments in an empirical 

situation.  Most research is based theoretical models with a set of restrictive assumptions 

that often are not satisfied in the real world [see, for example, Weitzman 1974 and 

Malcomson 1978].   

This research empirically examines (1) how the choice and design of instruments 

for water quality protection is influenced by the information available to decision-makers, 

and (2) the value of different types of information for water quality management.     

 

1.2.5 Value of information 
Given uncertainties, water quality managers can either choose a policy which 

minimizes information requirements, or invest into data collection.  Information 

collection improves decision makers’ expectations about the true values of benefits and 

costs of a policy alternative, thus decreasing the losses in policy efficiency due to 

deviation of expected and realized policy outcomes.  But then, with limited resources for 

learning, where should information investments be focused?  The priorities for data 

gathering can be determined by comparing the expected improvement in policy 

performance due to data collection and the costs of data gathering.  Obviously, the 

information that is expected to significantly improve the policy performance, and that 

does not require much time and efforts to be collected, should be gathered first.   

In the same way as the design of a policy is shaped by the amount and type of 

information available to the decision maker, the value of information depends on the 

policy design.  For example, the value of the damage cost information is smaller in the 

least-cost framework than for the net benefit maximization criterion, since such 
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information is not used to judging environmental performance in the least-cost 

framework.  Another example is the dependence of the value of information about private 

pollution control costs on the policy instrument used.  The value of this information is 

smaller for the pollution trading mechanisms than for the command-and-control 

approach, since the former mechanism reveals the private abatement costs information in 

the process of trading.  

1.3. Objectives of current research 
The foci of this research are the closely interrelated issues of the choice among 

alternative environmental policy instruments with imperfect environmental and economic 

information, and the value of different types of information for decision-making.   

More specifically, the following issues are investigated: 

a. The performance (measured by economic net benefits) and ranking of 

price and quantity nitrogen pollution controls under alternative 

information structures;   

b. The value of different types of information for alternative policy 

instruments (measured as improvement in policy performance due to 

data gathering) 

c. The effects of the policy spatial differentiation (i.e. uniform versus 

differentiated instruments) on information value and policy instrument 

ranking  
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d. The impact of policy spatial targeting (i.e., number of watersheds 

regulated in the region) on policy expected net benefits and 

information value;  

e. The influence of the prior knowledge of decision makers on the policy 

ranking and information value;  

f. The effect of the assumptions about functional relationships in the 

system on the policy ranking and information values.  

 

1.4. Study Region 
The empirical analysis is conducted using a model that simulates pollution control 

costs, pollution transport, and pollution damage costs in 8 subwatersheds of the 

Susquehanna River Basin (SRB).  The SRB covers about half of the Pennsylvania, and it 

comprises 43 percent of the Chesapeake Bay's drainage area.  The Susquehanna River is 

the largest tributary of the Chesapeake Bay, providing 90 percent of the fresh water flows 

to the upper half of the Bay and 50 percent overall [SRB Commission 1998].  Out of 73% 

of the stream Susquehanna miles assessed, 11% are considered to be impaired [SRB 

Commission 2003].  Nutrients (nitrogen and phosphorus) are main pollutants in the 

Susquehanna, along with the sediments and toxics.  Nutrients introduced into the 

Susquehanna are transported downstream and make up 20 percent of phosphorus and 40 

percent of the nitrogen found in the Chesapeake Bay [Alliance for the Chesapeake Bay 

2003].  Nutrient loading is a leading cause of environmental degradation in the SRB and 

Chesapeake Bay, primarily because it results in accelerated algae growth. When algae 

decompose, they consume oxygen, depleting the water's oxygen supply, a crucial element 
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for survival of the water organisms, such as Chesapeake's shellfish and fish stocks 

[Natural Resources Defense Council 1998].   

In 1987, the District of Columbia; the States of Maryland, Virginia, and 

Pennsylvania; and the Federal Government signed an agreement to reduce the amount of 

nitrogen and phosphorus entering the Bay by 40 percent by 2000.  Various pollution-

reduction strategies were put into place by the States, including statewide control of 

runoff from urban areas, farmland, and pastures; improvements in sewage treatment; and 

preservation of forest and wetlands, which act as buffers to nutrient-pollution inputs.  The 

objective was not achieved in time, partially due to the lack of funding, imperfect 

knowledge about economic activities and environmental processes causing/leading to 

pollution, and the reluctance to impose strict regulation that can intervene with economic 

objective.  In 2003, the parties agreed to achieve this objective by 2010.  This would 

require developing efficient pollution reductions strategies and regulations, which makes 

the topic of the current paper especially important.   

 

1.5. Model description 
This research focuses on regulation the nitrogen water pollution from corn 

production.  Agriculture is the leading source of nutrients, accounting for 50% of the 

nitrogen found in the Susquehanna [PA DOP 2000].  Among different agricultural crops, 

corn production accounts for 30% of total nitrogen loadings delivered to surface water in 
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the SRB [SRB Commission 1998].  This percentage rises even higher (approximately 

67%) if atmospheric deposition is excluded [Abler et. al. 2002]1.   

The empirical analysis is based on the coupled economic-biophysical model that 

simulates the effects of water pollution control instruments on polluters’ resource 

allocation decisions, the costs the polluters incur from changes in resource allocation, and 

the effects of their choices on pollution loads and environmental conditions in the SRB 

and the Chesapeake Bay (see Fig. A1 in Appendix A).  Economic benefits from corn 

production are defined as a sum of producers’ quasi-rents and economic crop land rents.  

Corn production is modeled as a function of land, nitrogen use, with all other inputs 

aggregated into a single composite input.  Nitrogen and land use are modeled explicitly, 

since their use directly affects amount of nitrogen runoff from a field.  The pollution 

transport component simulates hydrological processes that drive transport of pollutants to 

the mouth of each sub-watershed and further to the Chesapeake Bay.  Finally, the 

economic damage costs component aggregates three processes that determine economic 

losses due to environmental pollution in the Chesapeake Bay region: biophysical 

responses to pollution, resulting changes in services provided by water system, and 

economic evaluation of these changes [Ribaudo et. al.1999].  These processes are 

simulated with a single environmental damage cost function.   

To model decision makers’ uncertainty, alternative functional specifications of 

producers’ profits and damage costs are analyzed.  In addition, in each of the functional 

forms considered, some parameter values are assumed to be random.   

                                                 
1 Nonpoint sources are the leading cause of pollution in SRB and Chesapeake Bay [Chesapeake Bay 
Program 1999], and pollution from corn production is roughly 81% of all nonpoint nutrient loads 
[Carmichael and Evans 2000]. 



 

 15

The model is developed based on readily available literature sources.  That is, I 

reproduce the cheap (minimal) information on hand of the policy makers.  The policy 

design is analyzed for five information scenarios, in which ex ante (minimal) information 

is available, or perfect information about pollution control costs, pollution transport, 

damage costs or all of the imperfectly known parameters is expected to be collected.  The 

expected improvement in policy performance due to data gathering is used to estimate the 

value of information.    

Performance of alternative policy spatial targeting (the number of watersheds 

regulated) and policy differentiation (uniform versus differentiated policies) schemes are 

compared.  Their effect on the value of information is examined.   

 

1.6. Overview of the presentation 
In the next chapters, I first, present an overview of uncertainties in the water 

quality protection and their implications for policy design.  Value of information theory is 

then examined in relation to environmental policy design.  The research methods are 

presented in chapter three.  Then, the model calibration and data source are discussed.  

Next, I describe the simulations conducted and results of the simulations (chapter five).  

The last chapter presents conclusions and perspectives for future research. 
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Chapter 2.  Environmental policy design under 
uncertainty 

 

Addressing water pollution problem in a way that is not unduly burdensome to 

society requires consideration of how pollution control policy initiatives will affect 

economic choices that determine pollution loads (such as discharges or agricultural 

production practices), as well as balancing the costs of the changes in resource allocation 

and the decrease in environmental damages.  Moreover, public support for pollution 

control initiatives is unlikely when the benefits do not justify the costs.  Consequently, 

economic information on both abatement costs and environmental benefits is essential for 

sound environmental policy design.  However, many of the economic and biophysical 

variables relevant to policy design are not known by decision-makers.   

Below, I first present an overview of the types of uncertainties in watershed 

management, and the effects of the uncertainties on the environmental policy design and 

economic efficiency.   Then the literature on the effects of information collection on 

economic efficiency of a policy is examined.  

2.1. Types of uncertainty 
It is useful to group the sources of uncertainty in watershed management into two 

broad categories: (i) imperfect information about relevant economic characteristics (e.g., 

costs of pollution control, benefits of water quality improvements), and (ii) imperfect 

information about relevant biophysical conditions and relationships (e.g., the existing 

status of water resources and aquatic life; the relationship between pollution load and 

biochemical parameters of water quality).   
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2.1.1. Imperfect information about relevant economic characteristics 
A classic problem in the theory of regulation is that of asymmetric information.  

This problem arises when information, which a regulator needs to design societally 

optimal policies, is only private knowledge.  In environmental regulation, asymmetric 

information problem can arise from private knowledge about the costs and benefits of 

pollution controls (adverse selection), or about private actions affecting societal risks 

(moral hazard).   

First, let me consider the moral hazard problem.  Diffuse nature of NPS pollution 

makes monitoring of the pollution runoff from a field and loadings into water systems an 

expensive and challenging task [Ribaudo et. al. 1999].  The inability to observe loading 

would be mitigated if there were a strong correlation between ambient quality of a water 

body and some observable aspect of production (e.g., a production input) [Ribaudo et. al. 

1999].  However, such correlations are very rare due to the interference with the other 

natural/human-induced factors (such as weather events). As a result, a policymaker is 

uncertain as to whether poor water quality is due to producers’ failure to take appropriate 

actions, or to undesirable states of nature, like excessive rainfall [Ribaudo et. al. 1999].  

In turn, some of the production inputs which are critical for forecasting NPS pollution 

can be unobservable or prohibitively expansive to monitor [Ribaudo et. al. 1999].  Since 

regulators can not monitor environmental performance, producers have incentives to 

decrease pollution abatement costs by reduction in abatements [Hanley et. al. 1997].   

Several authors have addressed the moral hazard issue (e.g., Dosi and Moretto 

[1993, 1994]).  A classic paper is by Segerson [1988].  In her research, the regulator 

seeks to maximize expected social surplus in a hypothetical region with many 
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heterogeneous firms.  Emissions are deterministic functions of inputs, but environmental 

damages are stochastic function of firms’ emissions.  The profit and environmental 

damage costs functions, as well as the distributions of random parameters, are common 

knowledge of regulator and producers.  However, the regulator cannot monitor 

producer’s input use.  Segerson proves that optimal pollution reductions and input uses 

can be achieved when each polluter pays the full marginal damage costs, rather than just 

the firm’s share of damages.  Cabe and Herriges [1992], Xepapadeas [1994] and others 

further developed the mechanism suggested by Segerson.  However, the following 

information-related factors can hinder the practical application of the ambient-based 

policy mechanisms: possibly high cost of monitoring and considerable monitoring error, 

the link of current ambient conditions to the activities far in the past, and the considerable 

information burden for polluters, who need to understand the effects of their actions on 

ambient conditions [Shortle and Horan 2001]. 

Another type of asymmetric information - adverse selection - arises when an 

individual’s decisions depend on her privately held information in a manner that 

adversely affects uninformed participants [Mas-Colell et. al. 1995].  For regulatory 

authorities, it is expensive to monitor polluters’ compliance costs.  As a result, 

compliance costs are often only privately known, and the authorities are unable to design 

a policy that minimizes total costs of environmental goal achievement.   

Several studies have been focused on policy implications of the adverse selection 

problem (e.g., Weitzman 1974, Dosi and Moretto 1994).  A classic paper is by Shortle 

and Dunn [1986].  They consider the situation when regulators’ objective is to maximize 

social surplus in a hypothetical region.  The regulators do not know the firm’s profit 
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levels and hence, abatement costs.  The emission function is uncertain because of 

stochastic weather parameters.  However, the regulators can observe and control 

producers’ input choices.  The authors show that input tax scheme can be used to bring 

about ex ante efficient policies.   

Apart from asymmetric information, some economic parameters are not known to 

both polluters and regulators, such as future input and output prices, the values of future 

use of resources (option values), technologies that will become available, etc [see, for 

example, Sunding and Zilberman 2000]. Environmental instruments can be designed 

based on the polluters’ and environmental authority’s expectations about the imperfectly 

known parameters. 

2.1.2. Imperfect information about biophysical characteristics 
Another general source of uncertainty – imperfect information on natural 

conditions and processes - can be divided into epistemic and aleatory uncertainties [NRC 

2000, Hession 1996].  Aleatory uncertainty refers to unexplained random variability of 

some environmental characteristics, such as the weather or river flow [NRC 2000, Bobba 

et. al. 2000].  Such uncertainty is inherent characteristic of natural systems and can not be 

reduced by collecting additional information.  Epistemic uncertainty refers to incomplete 

understanding or inadequate measurement of critical biophysical conditions, stressors and 

other natural system properties.  This uncertainty is a property of decision makers 

(subjective uncertainty), and can be reduced by additional observations of the system 

[Kao and Hong 1996].   

As for the case of imperfect information about economic parameters, 

environmental policy can be based on the expectations about the biophysical parameters 
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and relationships.  Among the other studies analyzing the effect of biophysical 

uncertainties on policy design are the important works by Weitzman [1974], Stavins 

[1996] (a description of these studies is presented in subsequent sections).   

    In this research I will examine how economic and biophysical uncertainties 

influence the design and economic efficiency of instruments for water quality protection, 

and the value of investments to improve information for environmental policy design.   

2.1.3.   Characterization of uncertainty 
Imperfect knowledge about biophysical and economic system characteristics can 

take the form of model or parameter uncertainties [Bobba et. al. 2000, Finkel and Evans 

1987].  Imperfect knowledge of functional relationships (model uncertainty) is an 

ambiguity about the variables affecting the process of interest, and the functional 

relationships among these variables.  Parameter uncertainty is the inability to predict the 

parameter value with sufficient confidence, due to measurement error, sampling 

variability, or lack of observations, the numerical values of the key variables [Bobba et. 

al. 2000, Finkel and Evans 1987].            

To provide context, below I discuss some dimensions of environmental decision-

making and role of various types of information in addressing them. 

 

2.2. Policy design under uncertainty 
 

Adopting the framework suggested by Shortle and Horan [2001] and Horan and 

Shortle [2001], environmental policy design involves the choices of a) criterion to judge 
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performance of policy alternatives; b) the indicators of polluters’ compliance and water 

quality goals, c) the subset of polluters to target; d) the degree of policy differentiation 

among polluters; and e) the policy instrument used to induce changes in polluters’ 

production practices.   

2.2.1. Decision criterion 
Three general characteristics that are usually used to evaluate environmental 

policy are effectiveness, efficiency, and equity [Zilicz 1995].  The policy is said to be 

effective if it solves the problem it was supposed to.  The effectiveness is the most 

important policy aspect for the environmental activists who concentrate on such 

environmental outcomes as clean water, protected biodiversity, etc [Zilicz 1995].   

However, effectiveness does not characterize the costs of achieving 

environmental goals.  Hence, economists prefer the concept of efficiency, which implies 

accounting for both the costs and effects of a policy [Zilicz 1995].  The environmental 

effects are made comparable with abatement costs by evaluating the former and the later 

in the same terms, usually, in terms of money.   

As in the case of effectiveness, the idea of efficiency leaves aside the question of 

fairness, that is who will pay the costs and who will benefit from the effects.  Equity 

characterizes the distribution of costs and benefits among the parties of concern [Zilicz 

1995]. 

Economics focuses on the policy efficiency.  An efficient solution is one that 

maximizes social surplus – the private net benefits of production minus the expected 

economic costs of pollution [Ribaudo et. al. 1999].  An efficient policy leads to such 
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allocation of pollution reductions that for each site the marginal net private benefits and 

marginal environmental damages are equal [Ribaudo et. al. 1999].   

Although the maximization of social surplus results in societally optimal 

allocation of pollution reductions, such approach is very information intense.  It requires 

the knowledge of the relationships between pollution loading, ambient concentration, the 

state of water ecosystems, and services provided by a water body.  That is, it requires 

measuring environmental damages in monetary terms.  Such information is usually 

difficult to obtain [see, for example, Boyd 1998, Navrud and Pruckner 1997]. To 

decrease policy information requirements, a somewhat less stringent concept of cost-

effectiveness can also be used to analyze the policy performance.  A cost-effective policy 

achieves required environmental effect at the least possible costs [Zilicz 1995].  An 

example of such framework is achieving water quality standards with minimal costs.  

However, with such framework, there is no guarantee that the environmental objective is 

selected optimally [Zilicz 1995].  For example, pollution reduction objective can be too 

costly to achieve when compared with the benefits that a community receives from an 

unpolluted water body.   

 

2.2.2. Water quality goals, indicators, and compliance measures  
 As noted above, the information required for environmental policy decision-

making depends on how the environmental problem is formulated. Designing an 

environmental policy involves a choice of a water quality target and a set of means for 

achieving the target. For instance, if we can describe the physical, chemical, and 

biological components of water quality by a vector Q, then the environmental goal entails 
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a choice of a target level for Q.  The means for attaining the goal are the policy 

instruments that are used to induce changes in stressor levels through changes in the 

behavior of economic agents.  Instruments can be differentiated according to the 

variables that are measured for assessing the regulatory compliance of individual 

economic agents (e.g., the use of agricultural Best Management Practices or discharges 

from a sewage treatment plant), and the type of mechanism used to induce change in 

polluters’ behavior (e.g., standards or charges).  I will refer to a variable that is measured 

for assessing the regulatory compliance as a basis.  The societal and environmental 

consequences of a policy will depend on both the choice of ends and means.   

 The choice of environmental goals is an information intense task.  Environmental 

goals can be defined at various levels.  In the case of TMDLs, an upper level goal is the 

designated use of the water resource.  A reasonable choice requires the consideration of 

what is feasible, of costs and benefits, and is based on available information [NRC 2000].  

The operational goal(s) or standards that specify the levels of environmental indicator(s) 

and are monitored to measure attainment of water resource conditions necessary for the 

designated use (e.g., measures and standards for the specific physical, chemical, and 

biological attributes that must be met to support a cold watery fishery) are ascribed to the 

next level.  Significant informational issues must be addressed when choosing such 

indicators and goals for them.  Environmental indicators have been categorized as 

pressure and response indicators [European Environmental Agency 2003].  The former 

describe pollution loads, land uses, or other variables that are stressors on environmental 

systems.  The latter describe the physical, chemical, and biological conditions of 

resources, and possibly human responses to changes in environmental conditions.  
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Ideally, indicators used in the definition of operational goals will be response indicators 

that are valid and reliable for measuring whether the resource supports the designated 

use, and measured at reasonable cost.  Unfortunately, as the TMDL experience has 

shown, such indicators are not always available [NRC 2000].  Costs considerations or 

limitations of scientific knowledge force managers to use environmental indicators and 

corresponding operational goals that are limited in their validity and reliability.  These 

“second-best” indicators and goals can be response indicators and related goals, pressure 

indicators and related goals, or a mix of both types. 

 A question related to overall goals and indicators for water resources is how to 

measure the environmental economic efficiency of individual pollution sources [NRC 

2000].  Whether operational goals are attained generally will depend on the actions of 

individuals, businesses, and communities that determine the nature and level of point and 

nonpoint stressors.  Effective management of these stressors will require measurement of 

the environmental efficiency of these economic agents.  Ideally, the indicators used for 

monitoring the environmental economic efficiency and compliance of economic agents 

should be pressure indicators that are easily and directly connected with the actions that 

cause water quality impairment, and also capable of being routinely metered at 

reasonable cost.  However, like the indicators for defining and measuring operational 

goals, there can be significant gaps between what is ideal and what is technically and 

economically practical. 

 The economics literature on environmental policy design usually recommends 

pollution discharges as the preferable target for measuring environmental performance 

provided that discharges can be metered routinely and at reasonable cost [Oates 1995; 
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Shortle and Horan 2001].  However, these conditions are not always satisfied.  The case 

of nonpoint pollution sources of pollution is particularly noteworthy.  The spatially 

diffuse nature and other characteristics of nonpoint source pollution loads make it 

prohibitively costly to determine the contribution of individual nonpoint sources to 

pollution loads [Shortle and Horan 2001, Ribaudo et. al. 1999].  Accordingly, monitoring 

the performance of nonpoint sources generally requires that decision makers choose 

alternative compliance measures.  Options used in practice include discharges proxies 

(e.g. nitrogen application in excess of crops need) or pollution–related production and 

technology choices (e.g. fertilizer application, land use, conservation and tillage 

practices).  The choice of compliance measure should be guided by information on the 

relationship between the compliance measure and the environmental conditions and 

monitoring costs.  For nonpoint sources, input-based instruments are of particular interest 

because the monitoring the contributions of individual farms to nonpoint source loads is 

prohibitively costly [Shortle and Horan 2001; Ribaudo et. al. 1999].   

   

2.2.3. Whom to regulate 
In order to decide how to decrease pollution load into a water body, the polluting 

activities and specific pollution sources should be identified.  Agriculture, industry, urban 

settlements, atmospheric deposition of air pollutants, and other sources contribute to 

water quality impairments; however, their relative contributions differ.  Moreover, within 

each category of polluters – agricultural, industrial and urban - the contribution of each 

pollution source varies considerably.  Complete detection and quantification of water 

pollution sources can be a challenging and information-demanding task, involving large 
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spending on data collection, contacting polluters, monitoring and enforcement [Shortle 

and Horan 2001, Horan and Shortle 2001, Braden and Segerson 1993, Carpenier et. al. 

1998].  Given high information costs, a complete accounting is uneconomic, and 

therefore an environmental agency targets a subset of polluters.  Essentially, this is what 

has occurred in US water quality policies.  Large obvious polluters have been the target 

of regulatory efforts, while smaller or less obvious polluters have been neglected.   

However, the choice of a subset of polluters to regulate can result in the 

regulation of someone who causes little or no problem, and a failure to regulate someone 

who does contribute.  In both cases, economic efficiency of the policy decreases [Shortle 

and Abler 1995].  For example, regulating just PS caused considerable inequality in 

abatement costs between PS and NPS [Malik et. al. 1994, Camacho 1991].  This 

disparity, as well as the overall policy abatement costs, could have been reduced if both 

categories of polluters (PS and NPS) were regulated, and pollution reductions were 

distributed among them.  The information issue here entails balancing losses in policy 

social surplus due to targeting a subset of polluters against the information costs 

associated with regulating all polluters.   

Several studies address the issue of regulating a subset of polluters.  For example, 

Carpentier et. al. [1998] analyze nitrogen runoff standards for farms in the Low 

Susquehanna Watershed.  They consider two alternative targeting schemes.  The first 

option is to require all polluters in a watershed (237 farms) to reduce nitrogen runoff by 

40%.  Alternatively, a spatially targeted scheme can be used to set farm-specific 

reduction standards, focusing just on the farms with low compliance costs.  The targeted 

scheme decreases the number of regulated farms from 237 to just 93, and as a result, the 
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total costs of pollution control reduce to one-forth of the costs for the other regulation 

alternative.  Schleich and White [1997] analyze cost-effective policies to reduce the total 

phosphorus and total suspended solids for Fox-Wolf river basin in Northeast Wisconsin.  

They show that high percentage of reductions can be achieved by regulating a few 

watersheds instead of the control for entire region.   

To be effective, regulated subset should be small enough to make targeting 

worthwhile in terms of cost savings, and yet large enough to insure that the desired 

reduction in pollution for the watershed could be obtained [Bosch et. al. 1994].  This 

raises the issue of a basis for selecting a subset of polluters to regulate.  For example, 

Carpentier et. al. [1998] suggest targeting polluters with low abatement costs.  

Alternatively, Schleich and White [1997] consider selecting polluters based on their 

estimated abatement costs and loadings.  In Schleich and White [1997], if both PS and 

NPS are targeted, 99% reductions in total phosphorus and total suspended solids come 

from NPS.  Hence, regulation can be designed exclusively for NPS without significant 

increase in costs of achieving overall environmental objective.  At the same time, such 

targeted approach can reduce policy information requirements by eliminating the need in 

PS data.    

 

2.2.4. Spatial differentiation and scope 
By “spatial differentiation”, I mean policy discrimination among alternative 

locations/polluters.  One extreme is a policy designed uniformly for an entire country.  

An example is the national drinking water quality standards selected independently of the 

regional costs of compliance.  Another example is the uniform technology-based effluent 
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standards imposed on point sources under provision of CWA.  The other extreme are the 

regulations that are unique to specific polluters in a small watershed.   

For policy purposes, the polluters can be differentiated by types based on their 

abatement costs (“low” versus “high” costs) and pollution impacts (“low” versus “high” 

impacts).  A policy is efficient if marginal abatement costs are equal marginal 

environmental damages for each polluter [Shortle and Horan 2001, Ribaudo et. al. 1999].  

This efficiency requirement is satisfied for differentiated policies.  Such policy prescribes 

significant changes in the input use for polluters of “low” abatement costs types and 

“high” environmental impacts.  To the opposite, for polluters with “low” environmental 

impacts and “high” abatement costs, the required land and fertilizer use changes are 

insignificant.   

The efficiency requirement is violated for uniform policies, which set the same 

level of regulation for the polluters with different abatement cost and environmental 

impact types.  However, for a uniform policy, the information about site-specific factors 

is not required, and the information collection costs are reduced.  Hence, decision makers 

face tradeoffs between the costs of collecting information for differentiated instruments 

and the losses in economic efficiency for a uniform regulation.   

The disparity in the outcomes for the uniform and differentiated policies depends 

on how different or alike are the polluters in their abatement costs and environmental 

impacts.  The policies perform the same if all the polluters are identical.  In contrast, the 

benefits of the policy differentiation are greater when there is significant heterogeneity 

among polluters. 
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Several authors have compared the economic efficiency of spatially uniform and 

differentiated policies based on empirical models for particular regions.  Their 

conclusions vary.  Some research find that uniform policies are less information intense 

and hence, cheaper to control and enforce [see, for example, Fleming and Adams 1997; 

Moxey and White 1994; Helfand and House 1995; Hansen 2001].  Others find that 

targeting incentives to specific sites would significantly over-perform uniform 

approaches due to local geographic and hydrological conditions [see, for example, 

Babcock et. al. 1997, Russell 1986, Tsai and Shortle 1998, Johansson 2002; Schwabe 

2001; Carpenier et. al. 1998].  The differences in their results are influenced by the 

degree of heterogeneity among polluters and the flexibility of farmers responses 

considered (e.g., if the substitution among inputs and/or agricultural activities is captured 

by the model used in the research).  The more divergent the characteristics of polluters 

are and the more flexile the farmers in responses to the regulation, the more preferable 

are the differentiated policies.  Kostald [1986] emphasizes the importance of the 

functional relationships assumed for economic and biophysical parameters in the research 

models. He studies performance of uniform and differentiated taxes and tradable permits 

on emissions in the Four Corner Region.  The objective is to maximize social surplus 

from the regulation of air quality.  The private profits and abatement costs are not 

observable by the regulators.  The true functional form of the damage costs function is 

also unknown.  The author finds that uniform emission control is reasonably efficient 

when damage function is linear or concave.  For convex damage function, differentiated 

policies significantly outperform the uniform ones.   
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2.2.5. Which instrument to use 
In the end, it is the policy instruments that induce changes in production and 

pollution control practices to achieve environmental policy objectives [Shortle and Horan 

2001].  Instruments can be differentiated by the basis for measuring individual 

compliance and the type of mechanism used to induce changes in behavior [Shortle and 

Horan 2001].  The basis for regulation can be input use, production output, emissions or 

expected emissions, or ambient concentration (see the discussion about indicators and 

compliance measures above).  By the type, policy mechanisms can be categorized as 

“command-and-control” and “incentive-based”.  Command-and-control instruments 

specify exact rules for polluters’ activities (e.g. technological or discharge standards).  In 

the contrast, incentive-based (or “economic”) instruments leave polluters freedom to 

adjust their activities, but provide them with economic incentives to modify their choices 

in environmentally desirable ways.  Economic instruments include price-rationing (e.g., 

charges and subsidies), quantity-rationing (e.g., tradable permits), and liability rules 

[Hanley et. al. 1997].   

Economists have identified a menu of command-and-control and economic 

incentive instruments that can achieve economically optimal allocations of pollution 

control under perfect information [Shortle and Horan 2001].  For example, taxes on 

ambient pollution concentration can be used, or subsidies can be paid for implementation 

of best management practices.  However, they have also found that instruments that 

perform equally well with perfect information are not equivalent under conditions of 

uncertainty about costs and benefits [Weitzmam 1974, Stavins 1996, Shortle and Horan 

2001].  For example, command-and-control instruments are generally considered 

economically inferior to the incentive-based instruments because the command-and-
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control approach requires more information about pollution control costs than economic 

instruments to achieve equivalent results.  For example, compare standards and tradable 

permits.  For least-cost achievement of environmental goals, individual standards should 

be developed for each polluter based on his/her costs of abatement.  In contrast, pollution 

trading requires setting just the aggregate emission quota for a region.  Trading of 

pollution permits will achieve the least-cost allocation of pollution reductions among the 

producers without regulators’ participation [Shortle and Horan 2001].   

However, the economic efficiency of economic instruments also varies under the 

conditions of imperfect information.   

2.2.6. Efficiency of economic policy instruments under uncertainty  
In the case of uncertainty about the marginal costs or benefits of pollution control, 

Weitzman [1974] and others [Stavins 1996, Wu 2000, Shortle and Abler 1995] have 

shown that the relative ranking of optimized price and quantity instruments may differ 

depending on properties of the cost and benefit functions. 

A classic paper about relative efficiency of economic instruments is Weitzman 

[1974].  In his very general approach, Weitzman assume that the random error 

characterizing uncertainty is sufficiently small to justify quadratic approximations of 

generalized total cost and total benefit functions or, in other words, linear approximations 

to the respective marginal benefit and marginal cost functions.  He analyzes the 

uncertainties resulting in the shifts of marginal benefit and cost curves, and does not 

consider the imperfect knowledge about the slope of marginal curves.  Based on these 

assumptions, he finds that the relative ranking of pollution abatement price and quantity 

instruments is given by [the formulation is after Stavins 1996]: 
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where ∆tq is the difference between expected social surplus of tax and quantity controls;  

B’’ is the slope of the marginal benefit function, the second derivative of the total benefit 

function, B;  C’’ is the slope of the marginal cost function, the second derivative of the 

total cost function, C; and σC
2 is the variance of the abatement costs.  That is, abatement 

cost uncertainty is a precondition for different efficiency of policy instruments.  If 

abatement costs are known, the variance term σC
2 becomes zero, and the tax and quantity 

instruments result in the same expected social surplus.    

The result is graphically presented on Figure 2.1.  Suppose that the regulator 

knows the marginal benefits of control, but is uncertain about the marginal costs.  MCE 

and MCR represent the expected and realized linear marginal abatement cost functions 

respectively, and MB represents linear marginal benefits of abatement.  T is the tax set to 

achieve the expected socially optimal emission reduction; Q1 is quantity control, say, 

quantity of tradable permits. 

If marginal benefits MB are approximately constant across alternative levels of 

pollution control and the marginal benefits curve is almost flat, emission tax outperforms 

quantity control.  Compare the losses associated with the mechanisms due to the 

deviation of expected and realized MC, which are represented by areas ABC and ECD on 

Figure 2.1.  The realized marginal costs MCR are assumed to be greater than anticipated 

(MCE) for any control level, and the ex post efficient amount of emission reduction is Q2.  

The social loss associated with the tax, the triangle ABC, is significantly less than that of 

the permit program, the triangle CDE.   In the limit when MB are flat, tax control will 

achieve the societal optimum regardless of the realized costs if the tax rate is set equal to 
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the marginal damages.  Given this tax, the polluters will adjust the pollution levels in 

such a way that their privately known marginal abatement costs are equal to the taxes and 

hence to the marginal damage.  And the further the realized costs deviate from the 

expectations, the worse the permits does [Hanley et. al. 1997].    

Figure 2.1. Tax and Quantity Policy Instruments Ranking* 

 
* adapted from Stavins [1996].   

Alternatively, when the marginal benefits of control are extremely steep, tradable 

permits are preferable to the tax.  Under the tax control, the polluters’ adjustment of the 

abatement level according to the realized costs leads to an excessive/ insufficient 

pollution reductions when the costs are higher/ lower than predicted.  And the further the 

realized costs deviate from the expectations, the worse the taxes perform.  Alternatively, 

the fixed number of tradable permits will achieve nearly optimal level of pollution 

reductions regardless of whether realized marginal control costs exceed or are less than 

expected costs [Hanley et. al. 1997].   
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For the case with an “intermediate” slope of the marginal damages, both taxes and 

tradable permits will lead to some inefficiency.  If costs are higher than expected, taxes 

lead to insufficient control, and permits lead to excessively strict regulation.  If the costs 

are lower than expected, the situation is reversed.  The relative policy ranking will 

ultimately depend on the slopes on the marginal costs and benefits curves and on the 

uncertainty about the marginal abatement costs [Hanley et. al. 1997].   

Stavins [1996] expands the Weitzman’s results above by showing that the 

covariance between marginal costs and benefits matters.  He considered a situation with 

simultaneous and correlated benefit and cost uncertainty and showed that a positive 

correlation between damages and costs tends to favor the quantity instrument.  Negative 

correlation always tends to favor the price instrument.   

Weitzman [1974], Adar and Griffin [1976], Fishelson [1976], Roberts and Spence 

[1976], and Stavins [1996] focus on the emission-based instruments.  However, NPS 

pollution is diffuse and the runoffs of individual polluters are costly to monitor and 

regulate.  To decrease the monitoring costs, other bases for regulation can be used, such 

as producers’ variable inputs [Ribaudo et. al. 1999].  Shortle [1984] and Shortle and 

Dunn [1986] compare the performance of input-based instruments.  Their analysis is 

based on a model with asymmetric information about polluters’ profits/abatement costs 

and stochastic weather events affecting polluting runoff.  Regulators choose input 

standards, input taxes, expected runoff standards, or expected runoff taxes to maximize 

expected social surplus.  The authors found that appropriately specified input taxes 

generally outperform input standards and expected runoff incentives and standards.  
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Wu [2000] and Wu and Babcock [2001] point out the effect of inputs substitution 

on the ranking of input-based instruments.  The substitution effect increases the relative 

efficiency of standard if the regulated input has a close substitute that reduces marginal 

environmental damages.  That is, the standard decreases the use of targeted input, and at 

the same time, increases the use of non-targeted low-polluting substitute, which further 

decreases the environmental damages.  Economic efficiency of standards also improves if 

the input has a close compliment that increases marginal damages.  That is, imposing 

standard decreases the use of pollution-increasing compliment and this reduction 

increases efficiency of the policy.  However, if a regulated input has a compliment that 

reduces its marginal pollution costs, and the effect of marginal pollution costs is larger 

than the effect of marginal profits, the substitution effect favors taxes.  

Instead of treating instruments as policy alternatives, a regulator can apply a mix 

of instruments, and improve policy efficiency.  Roberts and Spence [1976] have 

constructed a hybrid policy that includes effluent tradable permits, fee and a subsidy.  

The system works as follows: the regulator issues a number of tradable emission permits.  

At the same time, the regulator allows polluters to generate emissions in excess to 

permits, but charges a fee per unit of such emissions. Finally, the regulator offers 

polluters subsidies per unit of any unused permit.  If the three regulator-controlled 

parameters in the system (number of permits issued, emission charges and subsidies) are 

chosen to maximize expected social surplus, the result must be at least as desirable, as 

either only permit, or only emission tax schemes.  Shortle and Abler [1995] developed a 

similar policy scheme, but based not on emissions, but on inputs of NPS.   
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While economists have demonstrated theoretically that information structures 

matter to the choice of instruments, the models they have used have been highly 

restrictive and therefore do not provide significant practical guidance about instrument 

choice in real world settings.  For example, Weitzman [1974], Stavins [1996] and Wu 

[2000] base their analysis on quadratic approximation of the benefit and cost functions. 

They model uncertainties as imperfect information about the intercepts but not the slopes 

of the marginal benefit and cost functions.  These are highly restrictive and unrealistic 

assumptions.  Malcomson [1977] presents a generalized expression for the price and 

quantity policy ranking that does not require the benefits and costs to be quadratic.  Given 

a certain characteristics of the distributions of the imperfectly known parameters, the 

decision maker can receive the opposite policy ranking depending on the application of 

the Malcomson’s or the Weitzman’s frameworks.  Malcomson demonstrated that the 

nonlinearities in the abatement benefits and costs functions influence the relative ranking 

of the policies.  However, the Malcomson’s framework is too general to provide guidance 

in real-life situations.  The more general the specification of the abatement benefit and 

costs functions are the more difficult to get an analytical solution about the policy 

economic efficiency and to interpret the results.   

An empirical analysis that is performed for a specific region with particular 

abatement cost and benefit functions can provide more guidance to a policy maker.  

Unfortunately, many empirical studies that focus on relative economic efficiency of 

alternative policy instruments do not incorporate uncertainty [see literature review in 

Horan and Shortle 2001].  An example of the study accounting for uncertainty is Wu and 

Segerson [1995].  They compare policy instruments given biophysical uncertainty and the 
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imperfect knowledge about future values of economic variables, but not the asymmetric 

information.  The study focuses on ground water pollution in Wisconsin.  The policy 

objective is to induce a 1% reduction in high-polluting corn acreage.  The policy options 

considered are reductions in price for corn, increase in Acreage Reduction Program 

(ARP) for corn, and increase in chemical prices.  ARP appears to be the most effective.  

However, the authors point out that the policies are analyzed based on their effects on the 

acreage decision.  Such decision criterion does not account explicitly for environmental 

impacts of alternative instruments.   

Many studies explore the impacts of policy from an ex ante point of view and do 

not analyze the value of information.  For example, Braden and Segerson [1993] present 

an abatement cost curve for sediment pollution in a watershed in Central Illinois.  The 

curve begins with a very little slope and becomes steeper as abatement cost is raised.  

They state that there is no corresponding information on the benefits (abatement 

demand). Given this, they can only speculate about the ranking of incentive and 

regulatory policies.  If demand and supply intersect at low levels of abatement, then the 

demand curve would almost certainly be steeper than the very flat supply curve and an 

abatement standard set to achieve the expected pollution level would probably minimize 

the ex post losses in economic surplus.  At the other extreme, the steep portion of the cost 

function would almost certainly be steeper than demand curve, in which case an incentive 

instrument would minimize ex post losses. However, different methods of estimating the 

cost function can produce different curvatures and different conclusions about the type of 

instrument that will minimize realized errors.  Another study, Yulianti et. al. [1999], 

compares effectiveness (as measured in the costs to achieve environmental quality goal) 
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of erosion taxes and standards in the Highland Silver Lake watershed (Illinois).  They 

conclude that among different uncertain economic and biophysical factors, the rainfall 

erosivity has the greatest effect on policy economic efficiency.  However, the authors do 

not analyze the expected increase in policy economic efficiency due to information 

collection (i.e., the value of information).   

The policy elements discussed above - spatial resolution, allocation of load 

reductions, and the choice of mechanisms – are interdependent [see, for example, Nichols 

1984 and Helfand and House 1995].  Policy economic efficiency and policy information 

requirements are determined by the combination of the elements.  The objective of 

current research is to analyze the effects of spatial targeting and differentiation, and the 

choice of the regulatory instrument on the policy economic efficiency and information 

requirements.  Both asymmetric information and imperfect knowledge about biophysical 

parameters are modeled and the effect of information collection on policy economic 

efficiency in terms of the value of information is considered. 

 

2.3. Value of information 
Given the pervasive uncertainties in water quality management, and impossibility 

to resolve them before making decisions, an adaptive approach to environmental policies 

implementation is essential [NRC 2000]. This implies a cyclical process in which policies 

are periodically assessed and revised. In the beginning of each cycle, environmental 

authorities have to decide how much data and of what type should be collected. Data 

collection improves policy economic efficiency but requires time and money spending 
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Value of information (VOI) concept allows estimation of the data collection 

effects on policy performance, which, in tern, helps to select priorities for data gathering.  

VOI is the expected gain in a money-metric measure of policy performance from 

utilizing additional information [Lawrence 1999].  In other words, VOI is the difference 

between expected ex post and ex ante social surplus.  Once the benefits of improved 

knowledge are estimated, they can be compared with the data collection costs so as to 

reach an appropriate balance [Nordhaus and Popp 1997].   

2.3.1. Formal presentation of VOI 
Formally, the value of information can be described in the following way (the 

framework is adapted from Lawrence 1999).  Denote the set of available and feasible 

policy alternatives by X.   A policy decision is a choice of the specific action x ∈  X (e.g., 

the level of input quota or tax) that satisfies a decision criterion.  The decision criteria can 

be, for example, maximization of a payoff function F (e.g., maximization of the social 

surplus).  The outcome of alternative actions x (i.e., F(x, .)) is affected by various un-

controlled factors (e.g., the level of private abatement costs), and is not known precisely.  

Denote the un-controlled factors by a random vector Θ.  It is assumed that the decision 

maker can identify possible realizations of the random events - possible “states of nature” 

- θ ∈  Θ (e.g., high or low private abatement costs).  The decision maker’s beliefs about 

possible states on nature are reflected in the probabilities p(θ).   

Given that payoff function F depends the realization of the random parameter θ, 

the decision maker has two alternatives.  First, he/she can immediately choose an optimal 

action x0 to maximize the expected payoff function: 
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( ) ( )∫ ⋅⋅=Π
θ
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,max0       (2.2) 

Alternatively, the decision maker can improve his/her knowledge about the 

random state variable by seeking additional information.  Information is defined as any 

stimulus that influences the probability distribution assigned to states of nature θ.  

Suppose a decision maker receives an information message y (e.g., polluters’ reports 

about their profits before and after pollution reductions).  This message leads the decision 

maker to change probabilities of possible states.  This change depends on the message 

itself and on the decision maker’s confidence in that the message corresponds to the true 

state of nature θ (e.g., the decision-maker may not believe that the serf-reports of 

polluters convey accurate information about their profits).  The decision maker’s 

probability distribution over the possible state of nature after getting the message y can be 

denoted as conditional probability p(θ|y).  Let xy denote the optimal action posterior to 

the receipt of the message y:  

( ) ( )∫ ⋅⋅
θ

θθθ dypxF
x

|,max        (2.3) 

Assume information collection resolves all uncertainty, that is yi = θi and p(y) ≡  p(θ).  

Then the decision maker’s payoff posterior message yi = θi is  

( )ix
xF θ,max          (2.4) 

The decision about information collection should be made before information is 

obtained.  That is, the possible results of information collection (all possible information 

messages y ∈Y and their probabilities p(y)) should be identified.  For each possible 

outcome of data collection, ex post optimal policy action should be chosen.  Then, 
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expected policy performance given data collection can be estimated as the expectation of 

the ex post performance:  

( )( ) ( )∫ ⋅⋅=Π
θ

θθθ dpxF
x

,max1       (2.5) 

Then, VOI is the difference between expected payoffs with and without information: 

VOI = Π1 – Π0        (2.6) 

2.3.2. Determinants of VOI 
The value of information depends on the following factors: a) the prior 

information available of the decision maker, b) the type of data collected (e.g., economic 

versus biophysical data), b) the accuracy and relevance of information to the decisions 

made, e) the decision options considered by decision maker, and f) the decision criteria 

used in the analysis [Lawrence 1999, Bosch et. al. 1994].   

The information available to the decision maker a priori influences how valuable 

the additional data are for making a decision.  The less information is available, the more 

“spread out” is the states’ probability distribution p(θ).  Information theory suggests 

several measures of uncertainty – variance, coefficient of variation, etc.  The most 

universal and widely used measure is Shannon’s entropy [Lawrence 1999]: 

( )( )∫ ⋅⋅−=
θ

θθθ dppH log)(        (2.7) 

The higher the entropy H, the less information about the system is available.  The entropy 

is maximal for uniform distribution and is zero when there is no uncertainty about the 

realization of random variable (since log[1] = 0).  Further, any change toward 

equalization of the probabilities increases entropy.   
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Intuition suggests that the less information is available ex ante, the higher the VOI 

should be.  However, the impact on information value is unclear because increased 

uncertainty (i.e., less knowledge), affects the value of both the prior (equation 2.2) and 

informed (equation 2.5) decisions [Lawrence 1999].    

Several studies focused on the effects of prior beliefs of decision makers on the 

value of information (e.g., Deutsch et. al. 2002, Schimmelpfennig and Norton 2003, 

Finkel and Evans 1987).  For example, Deutsch et. al. [2002] investigate the value of 

information about the effect of climate change on thermocline circulation2 (TCC) in the 

context of climate change policy.  They consider hypothetical “optimistic” and 

“pessimistic” decision makers who assign low and high probability for possible TCC 

collapse respectively.  The authors argue that the current system of ocean monitoring can 

have economic value for the “pessimistic” decision maker, but not for the “optimistic” 

one.  The current frequency of ocean system observations is very low (once in one to 

three years).  Hence, such monitoring system can not provide enough information to 

change optimistic beliefs about TCC collapse, even if they do not agree with the reality.   

The value of information depends on the type of the data gathered.  For example, 

Peck and Tiesberg [1995] and Nordhaus and Popp [1997] investigate the value of 

information about economic and biophysical parameters for green house gas policy.  

They show that information about economic parameters affecting environmental damage 

costs and abatement cost has higher value than the biophysical factors, such as 

temperature-CO2 relationship, rate of decarbonization, and the atmospheric retention rate.   

                                                 
2 i.e., ocean water circulations caused by vertical temperature gradient 
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Another determinant of the information value is accuracy of information.  

Accuracy can be characterized as the probability of receiving an information signal y 

when the true state of nature is θ.  Perfect information that precisely reveals the true state 

of the system has the highest value [Lawrence 1999].   

Peck and Teisberg [1993] and Adams and Crocker [1983] find that the value of 

information is contingent on functional forms used in the payoff function F.  Both studies 

show that the information about functional relationships in the system to be regulated has 

higher value that the information about specific parameters.   

Abrahams and Shortle [1997] investigated the relationship between the value of 

information and regulatory instrument considered.  They showed that it is the ex ante 

policy performance that determines the value of information for alternative instruments.  

The worse the ex ante policy performance is, the higher is the value of information.     

 

Chapter 3.  Methodology 
 

This chapter describes environmental instruments and the information scenarios 

analyzed.  Description of empirical model and experiments conducted conclude the 

chapter.  

3.1.  General Framework 
The optimal economic design of a particular instrument maximizes the expected 

economic surpluses accruing to consumers, producers, and resource suppliers less 

environmental damage costs, subject to the distribution of farmers’ responses to the 

policies being evaluated.  Building on the model of Shortle et. al. [1998], assume a 
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particular resource (e.g., a bay) is damaged by a single residual (e.g., nitrogen).  

Economic damages, D, are an increasing function of the ambient concentration of the 

residual, a, i.e. D(a, η) with D’ > 0, where η is a vector of imperfectly known 

environmental and economic parameters. Ambient pollution depends on loadings from 

agricultural nonpoint sources, gi (i = 1, 2, …, n), i.e., a = a(g1, g2, …, gn).  Loadings 

depend on a vector of variable inputs, xi, and imperfectly known site-specific 

characteristics influencing fate and transport of pollution (e.g., in stream-loss 

parameters), ωi.  The relation for site i is gi = gi(xi, ωi).   

Let πi(xi, δi) denote the economic returns to the ith farm, restricted on the vector of 

farm input use, x, and a vector of farm-specific characteristics, δ (e.g., the farmer’s 

management ability).  I assume that producers operate on competitive input and output 

markets, and take input and output prices as given.   The vector of agricultural practice 

parameters, δ, is only private knowledge, i.e. management decision is made under 

asymmetric information.  Given this specification, the expected social surplus is  

( ) ( )
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where the expectation operator E utilizes the planner’s distributions of the unknown 

parameters.   

I analyze the economic efficiency of two environmental policy instruments, price 

and quantity controls, applied to agricultural input use.  The ex ante optimal quantity 

controls (xi*) solves:  
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An optimal price control (e.g., tax/subsidy scheme) (ti*) maximizes the expected social 

surplus (3.1) contingent on polluters’ responses to the policy given their privately held 

information. Specifically, let  

}),({maxarg),( iiiii
x

iii xttxtx
i

−= πδ  for all i = 1, …, n    (3.3) 

where xi is a vector of agricultural inputs in ith watershed, and ti is a vector of 

taxes/subsidies applied to input subset which directly influences pollution runoff (e.g., 

land and fertilizer).  The optimal tax/subsidy scheme maximizes (3.2) subject to (3.3).   

Given asymmetric information about pollution abatement costs, the ranking of the 

policy mechanisms will generally differ, with the results depending on properties of the 

underlying profit and damage costs functions [e.g., Weitzman 1974, Wu 2000].  The 

difference in the expected social surplus between price and quantity controls is expressed 

as 0
>

<
=−=∆ xttx JJ , where the Jt refers to expected value of the price control, and Jx is 

the expected value of the quantity control.   ∆tx can be positive of negative.   

Policy economic efficiency can be improved by collecting additional information 

to reduce or eliminate uncertainty about pollution control costs or benefits.  The expected 

improvement in policy economic efficiency due to data gathering is the value of 

information.  Since information collection is costly and the budget available for data 

collection is often limited, the value of information can help to target investment in 

research.  For example, if the value of abatement cost information is higher than the value 

of other data types, and the costs are relatively low, collecting the control cost 

information can be the priority research direction.  The data collection priorities are set 

before the actual data are gathered, and the expected effect of information on policy 

economic efficiency should be estimated.  That is, the maximum social surplus should be 
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calculated for every possible outcome of data collection, and then the results should be 

averaged given the probability of alternative findings.  Hence, the value of information is 

the difference between the expected ex post and ex ante social surplus3.  For example, the 

expected value of perfect information about δ under the quantity control is  

( )( )[ ] *|,,,max xx

x JxESEVOI −= δηωδδ      (3.4) 

where the first term is the expected value of the optimal instrument contingent on 

realizations of δ, and the second term is the expected value of the decision without 

information (see (3.2)).  

The value of information is contingent on the policy instrument.  For example, 

given perfect information about pollution abatement costs, the optimized price and 

quantity mechanisms would perform the same: ∆tx = 0 if δ is known.   Accordingly, the 

value of perfect information on producers will be greater for the instrument that provides 

the lesser expected social surplus value without that information. 

The effect of policy spatial resolution on policy economic efficiency can be 

estimated by comparing expected economic efficiency of the spatially differentiated 

policies (3.1-3.3) with the economic efficiency of their uniform counterpart.  Expected 

social surplus for the uniform policies can be estimated by solving the system (3.1-3.3) 

with additional constraints that the control level is the same for all polluters: 

ji xx =  and ti = tj for all i and j for quantity and price control respectively  (3.5) 

Historically, environmental regulation firstly targeted the most polluted spots or 

the most environmentally harmful activities.  Such targeted approach decreases the 

                                                 
3 We assume that perfect information about each of the imperfectly known parameter is expected to be 
collected.  That is, there is the true value of the parameter is revealed.   
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number of polluters to be regulated and achieves environmental improvement without 

considerable spending on contacting, monitoring, and enforcement.  The expected 

economic efficiency of the targeted policy can be found by adjusting the policy level for 

the targeted polluter given that the activity level of the rest of the region is kept on the 

baseline level: 
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where p indicates the most polluting producer.   

Policy economic efficiency (3.1–3.3) and value of information (3.4) depend on 

the assumptions about the functional forms of model component πi and D, and the 

distribution of random parameters used to estimate expected value E.    

 

3.2. SRB  
Eight subwatersheds of the SRB are in the model.  The subwatersheds are based 

on the classification used in the PA State Water Plan.  The plan identifies 12 

subwatersheds (see Figure A2 and Table A1 in appendix A).  Of the twelve, watersheds 

223, 404 and 410 are dropped from this work because their nonpoint source loadings are 

negligible (see Table A1).  Watershed 401 is combined with watershed 301, since the 

watersheds individually have negligible loading but lie in the interior of the SRB.  I focus 

on nitrogen pollution loads from corn production.  Corn production is the major source of 

nitrogen loading in the SRB, accounting for 30% of total nitrogen loadings delivered to 

surface water.  This percentage rises even higher (approximately 67%) if atmospheric 
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deposition is excluded [Abler et. al. 2001]4.  I model nitrogen loads as functions of 

nitrogen application and/or corn acreage in each subwatershed, and consider policy 

instruments that target these inputs.   

 

3.3. Empirical Model  
The research objectives are addressed using a numerical model of nitrogen 

pollution loads from agricultural nonpoint sources in the Pennsylvania portion of the 

SRB.  The model includes three components that simulate pollution abatement costs, 

pollution transport processes, and water quality damage costs (see Figure A1 in appendix 

A).  The abatement cost component simulates polluters’ responses to different 

environmental policy designs and computes the corresponding profits and abatement 

costs.  The pollution transport component simulates hydrological processes that drive 

transport of nitrogen runoff to the mouth of each sub-watershed and further to the 

Chesapeake Bay.  Finally, the water quality damage component aggregates the processes 

that determine economic costs due to environmental pollution in the Chesapeake Bay 

region.  

The performance of input-based quantity (tradable permits) and price (tax) 

instruments is evaluated against the expected net benefit criterion.  The expected 

improvement in policy performance due to data gathering, that is the value of 

information, is estimated.  The sensitivity of the policy performance and information 

value to the prior knowledge of the decision maker is examined by comparing the results 

for alternative functional forms of agricultural profits and alternative distributions of the 
                                                 
4 Nonpoint sources are the leading cause of pollution in SRB and Chesapeake Bay [Chesapeake Bay 
Program 2003], and pollution from corn production is roughly 81% of all nonpoint nutrient loads 
[Carmichael and Evans 2000]. 
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uncertain pollution transport parameters.  Finally, the effects of two spatial policy 

characteristics on the policy performance and information value are examined: spatial 

differentiation (uniform versus differentiated regulation), and spatial targeting (number of 

sub-watersheds in the region targeted by regulation).   

The current research builds on the models for agricultural and point source 

pollution controls previously developed by Abler, Horan, Shortle, and Carmichael 

(referred to below as the AHSC model) [see Abler et. al. 2001 and Horan et. al. 2002a, 

b].  The AHSC model has been used to examine the impacts of climate change on 

nitrogen loads from agriculture in the SRB, and the design of point-nonpoint nitrogen 

trading in the SRB.  The AHSC models offer a useful starting point and the main features 

are retained.   However, this research entails significant differences in the applications of 

the model.  These differences include: 

• An expanded scope of environmental policies:  AHSC has only been used 

to examine point-nonpoint trading.  I examine both price and quantity controls. 

• Value of information: AHSC has not been used to estimate the value of 

information.  Estimating the value of information requires computing and comparing ex 

ante and ex post optimal solutions.  The AHSC model computes ex post optima but 

solution routine is substantially modified to compute ex ante optima. 

• The AHSC model was used to represent differentiated regulation for each 

of the sub-watersheds.  I am comparing performance of differentiated and uniform 

policies, as well as different levels of policy spatial targeting.  

In addition, significant adjustments are made in the structure of the AHSC.  These 

adjustments include: 
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• Functional forms.  AHSC represents agriculture with 2-level CES 

production.  I explore the sensitivity of study results to the assumption about agricultural 

production technology.  Two specifications of production are used: 2-level CES 

production function and second-order series approximations of the unknown profit 

function. 

• Alternative representations of information:  The AHSC model captures 

certain parametric forms of aleatory and epistemic uncertainty, and asymmetric 

information.  However, I wish to explore alternative representations of uncertainty. The 

AHSC model assumes specific probability distributions for each imperfectly known 

parameter.  I explore how the relative ranking of policy instruments and value of 

information changes with assumptions on the prior probability distributions.  

A description of the model components, the calibration procedure, the baseline 

data, and conducted simulations is presented below.   

3.3.1. Control Costs  
The optimal economic design of a policy instrument maximizes expected social 

surplus – the expected difference between benefits from economic activities and 

environmental damage costs [Just et. al. 1982].  The economic benefits are modeled as a 

sum of profits of the corn producers and the quasi-rent on the land market.   

More explicitly, the corn production profit in each watershed is modeled as an 

increasing concave function of nitrogen fertilizer, land, and other inputs.  The profit 

equation is defined below:   

πi(ni,li,qi,pc,ρi,ri,wi,δi ) = ( ) iiiiiiiiiic qwlrnqlnfp ⋅−⋅−⋅−⋅ ρδ,,, ,    (3.7) 
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where i indexes watersheds, ni is nitrogen fertilizer applications to corn, li is land in corn, 

qi is the vector of other agricultural inputs, pc is the corn price, iρ  is the fertilizer price, ri 

is the land rental price, wi is the vector of price for other inputs; fi is corn production 

function, and δi is a vector of watershed-specific technical parameters.  Fertilizer and land 

are modeled explicitly because they directly influence the amount of nitrogen runoff from 

a field and because of policy interest.  Nitrogen applied as fertilizer is easily transported 

with soil particles or as a surface runoff.  Land is often considered as a substitute to 

nitrogen fertilizer in agricultural production (extensive versus intensive agriculture) [see, 

for example, Mensbrugghe 2001].  Substitution of land for fertilizer in corn production 

process can lead to the reduction of the runoff without decrease in the production volume.  

In addition, the increase of the agricultural land use can be due to implementation of the 

best management practices (BMPs), such as vegetated buffer strips, which also decreases 

runoff.     

 The production parameters δi are determined by watershed-specific characteristics 

of land (e.g., land quality) and the management skills of the farmers (e.g., the timing of 

the fertilizer application).  These are private knowledge of the farmers.  To represent the 

asymmetric information, it is assumed that the farmers know δi when choosing a 

management practice, but the agency does not have these knowledge when choosing a 

policy.  

Different functional forms can be assumed to model corn profit function (e.g., 

Constant Elasticity of Substitution (CES), Leontief, or translog production functions), 

and the parameter vector δi will vary accordingly.  For example, CES function require 

specification of the input substitution elasticities and the factor shares, while the translog 
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production function require knowledge of the coefficients near the logarithms of input 

uses and near the squares and cross-products of the logarithms.  Given uncertainty about 

the true functional form, I consider two possible specifications – a quadratic 

approximation of the profit function and a profit based on CES production function.  

Parameter uncertainty is modeled in each case.  Quadratic approximation implies that the 

production and profit functions are not known by the policy makers, and they are 

approximated by the second-order series expansion.  CES production function implies 

that the authorities assume that this is the true specification of the production in the 

region, and they base the profit estimates on it.  The functions will be described in more 

details in the next sections.    

In the SRB corn competes with other agricultural and non-agricultural activities 

for crop land.  To estimate policy-induced changes in land rental rates and related change 

in welfare of land owners, I model an agricultural land supply function, which is an 

increasing function of the agricultural land rent r:  
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The land rental price can be found as the inverse function of land supply: 

),( i
S

iii lrr γ=           (3.9) 

In the equilibrium, agricultural land supply equals land demand, and the superscript “s” 

can be dropped (li
s = li

d).   

The functional form and the parameters γi of land supply are determined by the 

watershed-specific land as well as socio-economic processes influencing land allocation.  

The functional form is not perfectly known to the decision makers, and in the current 



 

 53

research, the function is approximated by the first-order polynomial.  The parameters γi 

are assumed to be perfectly observable by the land-owners, but not by the environmental 

agency.    

The owners of the factors of production (including land-owners) derive 

“economic rent” from the services provided by the factors for which there is a positive 

market demand [Just et. al. 1982].  The land rent expression (3.9) can be used to compute 

the economic surplus accruing to land owners.  The surplus (or quasi-rent, or producer 

surplus) is the area below the price line and above the supply curve [Just et. al. 1982].  In 

watershed i, the surplus on the land market (Ri) can be formally expressed as follows: 

( )∫ ⋅−=
il

a
iiiii dzzrlrR γ,         (3.10) 

where the low limit of integration a is the level of land supply for which land rent equals 

zero.   

3.3.2. Pollution Fate and Transport 
The environmental agency is unable to observe the pollution transport process at 

reasonable costs.  However, it can form expectations conditional on relevant data. These 

expectations are viewed as the agency’s estimate of pollution transport under specified 

circumstances [Shortle and Dunn 1986].  The general form of the agency’s pollution 

transport model from ith watershed to the Bay is:  

( )iiii gtt ω,=           (3.11) 

where ig  represents NPS loading to the mouth of ith watershed; ωi is a vector of 

watershed-specific parameters that determine how big is the share of pollution 

transported to the Bay, and ti is the watershed’s load to the Chesapeake Bay.  To 
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represent decision-makers’ imperfect knowledge about transport processes, the parameter 

ωi is modeled as a random variable.    

Given watershed load (3.11), the total load from the SRB region to the Chesapeake 

Bay is the sum of load from each watershed: 

∑=
i

itL          (3.12) 

 

3.3.3. Economic Damages from Pollution 
By definition, environmental damage cost is the damage which a pollutant or an 

activity causes to human health, agricultural crops, materials and ecosystems, expressed 

in monetary terms [Hanley et. al. 1997].  In the current study, environmental damage 

costs due to nitrogen pollution of the Chesapeake Bay are modeled with a single function.  

Essentially, the damage cost function combines two types of information: (1) biophysical 

information about reactions of water ecosystems to pollution and (2) economic 

information about effects of ecosystem’s states on human well-being.  As mentioned 

above, this approach does not require separate simulation of biophysical responses to 

pollution in the Bay, which significantly simplifies modeling task.   

There are limited empirical estimates to determine the level of economic damages 

due to agricultural pollution in the Chesapeake Bay.  Most of the studies [e.g., Sims and 

Coale 2002, Constanza et. al.1990] address ecological effects of the Bay pollution 

without considering economic consequences.  Limited economic studies [e.g., Kirkley et. 

al. 1999, Bockstael et. al. 1995, Bockstael et. al. 1988] focus on specific well-defined 
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services of the water system (e.g., angling), or examine site-specific case-studies (e.g., 

Neuse River in North Carolina) (see Table A2).   

In the current research, the functional form of the damage is based on theoretical 

literature [e.g., Shortle 1984, Nawar 1998, Damania 2001, Kakita 2001, and Poe 1998] 

and practical considerations.  It is generally assumed that the damage costs function has 

four intervals, where damages are zero (before assimilation potential limit is not reached), 

exponential (when the extra unit of emission causes more and more damages), and then 

concave and constant (when the degradation is very high, and an extra unit of emission 

can not worsen the situation further).  Rising concern about the water quality shows that 

the assimilation potential of the Chesapeake Bay is exhausted.  On the other hand, the 

water deterioration is still moderate – the estuary is still providing homes, protection and 

food for complex groups of species and the Bay is still a valuable commercial and 

recreational resource for the more than 15 million people who live in its basin 

[Chesapeake Bay Program 2003].  Hence, it is assumed that the current state of the Bay is 

on the second interval of the damage function (exponential).  Such convex damage cost 

function guarantees that the objective function of the water quality manager – the social 

surplus – is concave with a single optimum level of emission.   

The damage function is presented as an increasing convex function in pollution 

amount: 

),( κLDD = ,   0.
>

∂
〉〈∂

L
D ,  0.

2

2

>
∂

〉〈∂
L
D    (3.13) 

where κ  is a vector of parameters.  The convexity of the damage cost function implies 

that the marginal costs are increasing with increase in the pollution loads.  To reflect the 

uncertainty about the damage costs, the parameter vector κ  is assumed to be random.  
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3.3.4. Experiments Conducted 
Four questions are addressed in the research: (1) the performance of NPS input-

based price and quantity policies for different information structures, (2) the value of 

alternative information structures for the performance of alternative policies, (3) the 

effect of spatial scale and differentiation on policy performance, and (4) the importance 

of the prior decision maker’s knowledge for policy ranking and information value.  For 

the first question, price and quantity control are ranked based on their expected net 

benefits and given different information structures (see (3.1-3.3) above).  I model five 

information scenarios.  For the first scenario, I compare policies designed with the 

baseline (minimal, ex ante) information.  In the other four scenarios, I analyze the 

expected increases in the policy performance due to improved information about: a) 

producers’ abatement costs (parameters δ); b) pollution transport processes (parameters 

ω); c) environmental damage costs (κ); and d) all the above.  The expected value of 

information is evaluated as the expected improvement in policy performance for 

scenarios a), b), c), and d) in comparison with the performance given baseline 

knowledge.   

To analyze the sensitivity of policy performance and VOI to the prior knowledge 

of the decision maker, I compare the results assuming two probability distributions of the 

uncertain pollution transport parameters: uniform and normal.   

All the experiments are conducted assuming the quadratic approximation of the 

agricultural profit function around the baseline values.  However, to evaluate the 

sensitivity of the research results to this assumption, the performance of the quantity 

control mechanism is compared for two alternative functional form specifications: 

quadratic and constant elasticity of substitution.  
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To estimate the effect of spatial targeting on the policy performance and 

information value (equation 3.6), I model the policies affecting one, two, or three the 

most polluting watersheds, and compare their performance with the regulations applied to 

the whole region.  The effect of the watershed targeting on the relative ranking of price 

and quantity instruments is analyzed.   

The effect of policy spatial scale is examined by comparison of uniform and 

differentiated policies, as given in equation (3.5).  
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Chapter 4.  Model Calibration 

 
This chapter describes functional forms selected to simulate producers’ profits, 

pollution fate and transport, and environmental damage costs.  Data sources for 

calibration of deterministic and imperfectly known parameters also described.  Then, 

simulation procedure is depicted.  

 

4.1. NPS profits 
I consider two possible specifications of the corn producer profit function: a 

second-order polynomial approximation around the baseline level of input use and the 

profit function based on CES production.   

 

4.1.1. Quadratic approximation 
The second-order series approximation (or expansion) of a function of two 

variables z(x, y) and the approximation point (x0, y0) can be written as  

( )

( ) ( ) ( ) ( ) ( ) ( )( )2
0002

2
0201010 2

2
1

,

yyyyxxxxyyxxz

yxz

−⋅Ω+−⋅−⋅⋅+−⋅⋅+−⋅+−⋅+

≅

θβθβ
(4.1) 

where z0, β1, β2, θ1, θ2, and Ω are coefficients of approximation.  An example of such 

approximation is Taylor expansion, which sets the coefficients β1, β2, θ1, θ2, and Ω equal 

to first- and second-order derivatives of the approximated function, and the constant z0 

equals to the value of the function at the point of approximation.   

Series approximations are a common way to approximate a mathematical 

function, since the error of approximation can be easily controlled by the degree of the 
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approximating polynomial, and the approximation is very easy to work with [Hosking et. 

al.1996].  However, the expansion polynomial closely reproduces the underlying function 

just in the “neighborhood” of the expansion point.  The farther the independent variables 

from the expansion point is, the greater is the approximation error [Hosking et. al. 1996].  

The approximation is widely used in production analysis (for example, [Hoff 2002] state 

that the translog form may generally be viewed as a second order Taylor approximation 

to an arbitrary production form).   

In my analysis, for watershed i, the profits of corn producers are modeled by the 

restricted profit function πi(ni,li) = iiiii lrnrlnk −− ρρ ),,,( , where ki(ni,li,ρ,r) = 

( ) iiiiiiic qwqlnfp ⋅−⋅ δ,,,  (see equation (3.7) above).  I approximate ki(ni,li,ρ,r) by a 

second-order polynomial.  The expansion point used here is the baseline levels of 

fertilizer and land use.  Given the approximation, the corn profit (3.7) can be written as: 

( ) ( ) ( ) ( )
( ) ( ) iiiiiii

iiiiiiiiiiiiii

lrnllnn
llnnllnn

⋅−⋅−−⋅−⋅Ω
+−⋅⋅+−⋅⋅+−⋅+−⋅+≈

ρ
θβθβππ

00

2
02

2
0201010 5.05.0(.)   (4.2)  

where i0π  is the profit before deducting the costs of land and fertilizer for the ith 

watershed, iii and,, Ωθβ  are approximation coefficients, and andoi iol n are the 

baseline levels of land and fertilizer use.  The profit maximizing levels of fertilizer and 

land are then obtained by maximizing equation (4.2).   

Coefficients β1i, β2i, θ1i, θ2i, and Ωi are calibrated based on input prices and input 

demand elasticities in the following way.  Assuming that the baseline values ( , )oi oil n  are 

profit-maximizing choices (i.e. 0ρπ =∂∂ oii n  and 0rloii =∂∂π ), it must be true that the 

coefficients before the linear terms in the equations are equal to the input prices: 

01 ρβ =i , 01 ri =θ .  The coefficients before the square terms are calibrated to be the 
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functions of own- and cross-price elasticities of input demands.  To do this, nitrogen and 

land demands are found from the profit function (4.2):  
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From this input demand equations, one can express the own- and cross- price demand 

elasticities:  
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where lε  is the elasticity of land demand, nε is the elasticity of nitrogen demand, nlε  is 

the cross-price elasticity of nitrogen demand to land price.  Utilizing the relationships 

(4.4) and given the prices and inputs are set at their baseline values, we can express βi, θi, 

and Ωi as functions of the elasticities:   
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To capture the asymmetric information problem, the values of input demand 

elasticities are assumed to be uncertain from the regulators’ perspectives.  In other words, 

the values of the approximation coefficients β2i, θ2i, and Ωi depend on the random 

elasticities, and are random themselves.  The random expansion coefficients imply that 

environmental agency knows the points on the fertilizer and land input demand functions 

corresponding to the baseline prices and quantities (i.e. it observes prices and quantities), 

but does not know the slope of the input demand curves, nor how curves would shift with 

changes in the price of the other input.   

To make the comparison between the two functional specifications – quadratic 

expansion and CES – easy, the values of input demand elasticities are selected to be the 

same for both functions.   

 

4.1.2 Constant elasticity of substitution function 
Alternatively, corn profit function can be modeled based on two-level CES 

function.  The two-level CES function allows same/different substitution elasticities5 for 

the inputs on the same/different levels of the function.  In addition, the two-level CES 

have very convenient properties, which make it easy to work with.  The production 

function is concave in inputs, which allows finding the input use level that maximizes the 

profits.  The function exhibits constant return to scale, which implies constant marginal 

                                                 
5 The elasticity of substitution is defined as the percent change of in the input ratio compared to the percent 
change of the rate of technical substitution (the slope of the isoquant = Fx/Fy ). 

( )
( ) yx

FF
FFd
yxd xy

xy

.≡σ
, where x and y areproduction inputs, and F represents a production function.   

The elasticity of substitution is “a measure of the ease with which the varying factor can be substituted for 
others” [Hicks 1932 quoted by Fonseca and Ussher 2003].  For example, it can be used to analyze how 
much factor proportions change when the relative factor prices change, holding output constant [Collier 
2003]. 
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costs and linearity in output.  In addition, the function is strongly separable, which 

implies that the allocation of factors within each class is determined exclusively by 

relative factor prices of that class only [Varian 1992].  Apart from the theoretical 

analysis, many empirical studies are based on the CES agricultural production (see, for 

example, Abler et. al. 2001, Horan et. al. 2002a, Howitt et. al. 1999, Thirtle et. al.1995, 

Salami et. al. 1998).  

Following prior work based on this approach [Horan et. al. 2002a, Abler and 

Shortle 1995; Kawagoe et. al. 1985; Thirtle 1985; Binswanger 1974], production in the 

ith region, yi, is a function of a composite biological input, Bi, and a composite 

mechanical input6:  

( )( )y a B a Mi i i
* * *= + −1 1

1

1α α α         (4.8) 

where yi
*, Bi

*, and Mi
* are scaled levels of corn production and mechanical and biological 

inputs in ith watershed: 0
* yyy ii = , 0

* BBB ii = , and 0
* MMM ii = ; y0, B0, and M0 are 

the baseline levels of corn production and factor use before the policy is imposed; a1 is a 

distribution coefficient; and the exponent α is based on the elasticity of substitution 

between the inputs, σy:  

α = (σy – 1)/ σy         (4.9)   

The initial values of the normalized variables y*, B*, and M* before environmental policy 

is imposed equal one. 

                                                 
6 As stated in Sato [1967], to realistically describe a production process, “the production function must 
include a large number of factors representing various types of capital goods, labor, energy, intermediate 
materials, etc.  However, a certain – and usually very substantial – degree of aggregation is essential in 
making such a production function operationally manageable.  A number of inputs must be aggregated into 
a single index.  Hence, we aggregate different types of capital goods into a composite good called capital.  
Similarly with labor, etc.  The condition that must be satisfied for this kind of aggregation is the 
separability of variables”.    
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In turn, on the second level of production, biological input consists of land and 

nitrogen fertilizer: 

( )( ) ςςς 1*
1

*
1

* 1 iii lbnbB ⋅−+⋅=        (4.10) 

where li
* = li / li0 and ni

* = ni / ni0 are normalized values of land and nitrogen use 

respectively, ni0 and li0 are the baseline levels of input use; exponent ς is based on 

substitution elasticity between land and fertilizer, σB:  

ς = (σB – 1)/σB.          (4.11) 

The mechanical input Mi combines labor, capital, and chemicals.  The 

components of the mechanical input are not modeled explicitly, since the change in their 

proportions is not important for the purpose of the analysis.  

In order to calibrate the distribution coefficients a1 and b1, two assumptions are 

made.  First, it is assumed that the farmers’ objective is to maximize profits.  Given this 

assumption, the first order conditions for profit maximization with respect to the 

composite biological and mechanical inputs are: 

y*
B = a1 (y* / B*)1- α =  w*

B/p*         (4.12) 

y*
M = (1 - a1) (y* / M*)1- α =  w*

M/p*        (4.13) 

where wB and wM are composite prices of biological and mechanical inputs.  Multiplying 

both sides of (4.12) and (4.13) by (B*/y*) and (M*/y*) respectively, one gets  

a1 (y* / B*) -α =  wB B* /p y*         (4.14) 

(1 - a1) (y* / M*) -α =  wM M* / p y*       (4.15) 

The second assumption made for the model calibration is the competitive 

equilibrium in the regional economy.  In this case, the farms make zero economic profits, 

and gross returns from sales equal total costs: 



 

 64

p* y* = w*B B* + w*M M*        (4.16) 

This assumption allows (4.14) and (4.15) to be rewritten  

a1 (y* / B*) -α =  sB         (4.17) 

(1 - a1) (y* / M*) -α = sM         (4.18) 

where sB and sM are biological and mechanical input shares in the total expenditures, sB = 

wB B* / (wB B* + wM M*) and sM = wM M* / (wB B* + wM M*).  Note, that y*, B*, and M* 

are the normalized levels of input use, and before a policy is imposed, their values equal 

one.  Hence, the coefficient a1 is the biological input cost share: 

a1 = sB           (4.19) 

By the same logic, the distribution coefficient b1 in the composite biological input can be 

found from the nitrogen cost share, sn:  

b1 = sn / a1          (4.20) 

To reflect the asymmetric information of decision makers about the polluters’ 

production practice, the substitution elasticities σB and σy are modeled as random 

variables.  However, in order to make the policy performance results comparable between 

the two production function specifications (CES and approximation), the imperfectly 

known substitution elasticities σB and σy are calibrated to determine the input demand 

elasticities εn, εl, and εnl.  To derive the expressions for the input demand elasticities in 

terms of the input substitution elasticities, the following manipulations were performed.  

First, the expressions for input demand elasticities ni(ρ,r,wM,a1,b1,α,ς,y), 

li(ρ,r,wM,a1,b1,α,ς,y), and Mi(ρ,r,wM,a1,b1,α,ς,y) for CES function are found from the 

following cost minimization problem: 

iMiiMln
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(see appendix B for the solution).  From these input demand equations, the elasticities 

εn(ρ,r,wM,a1,b1,α,ς), εl(ρ,r,wM,a1,b1,α,ς), and εnl(ρ,r,wM,a1,b1,α,ς) were evaluated as:  

(.)
(.)(.)
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x

x ⋅
∂
∂

=ε          (4.22) 

where x(.) is nitrogen or land input demand function, and w stands for input price (see the 

complete expression in appendix B).  The baseline input prices ρ, r, and wM, as well the 

distribution parameters a1 and b1 are assumed to be known by the decision maker.  By 

(4.9) and (4.11), the substitution parameters α and ς are functions of the input substitution 

elasticities, σB and σy.  Hence, the value of the input demand elasticites are determined by 

input substitution elasticities  εn(σy, σB), εl(σy, σB), and εnl(σy, σB).   

   

4.1.3. Land market 
A first-order polynomial is used to approximate the imperfectly known land 

supply function in each of the sub-watersheds: 

( )00 rrll iii −⋅+≈ γ          (4.23) 

Coefficient iγ  can be found utilizing expression for land supply elasticity εls, given that 

the land use and land price are at the baseline levels: 

0

0

r
l i

lsi εγ = ,          (4.24) 

The environmental agency’s uncertainty about costs to land owners and policy reactions 

in land supply is modeled by treating the price elasticity εls as a random variable with a 

known distribution from the agency’s perspective.  Essentially, I assume that agency 
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knows a point on the land supply function in each watershed corresponding to the 

baseline price and quantity, but does not know the slope of the supply curves about the 

expansion point.   

This land supply function can be used to compute the economic surplus accruing 

to land owners: 

( )∫ 







−+−=

il

a
i

i
iii dzlzrlrR 00

1
γ

       (4.25) 

The lower limit of integration a is the level of land supply for which land rent equals 

zero: 

00 rla ii γ−=           (4.26) 

Combining (4.25) and (4.26), one can find the derive land rent function: 
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00         (4.27) 

4.2. Pollution Transport to the Mouth of Sub-Watersheds 
To simulate the nitrogen load from corn production to the mouth of each sub-

watershed, an approximation of the Generalized Watershed Loading Function (GWLF) is 

used.  GWLF was developed by Haith and Shoemaker [1987] and calibrated for SRB 

watersheds by Evans [2002-2003].  It is an empirically based model, which uses daily 

weather and water balance data to reproduce runoff volumes and nutrient loads.  Surface 

nutrient losses are determined by applying dissolved N and P coefficients to surface 

runoff for each agricultural source area.  The model allows multiple land use/cover 

scenarios, but each area is assumed to be homogenous with respect to parameters that 

determine the runoff (slope, land errosivity, etc).  The model does not spatially distribute 
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the source areas, but simply aggregates the loads from each area into a watershed total 

[Cousino 2002, Evans 2002-2003].   

The GWLF is too complex to be directly linked with economic and damage 

components in my model. Accordingly, two simplifications of the GWLF were made.  

First, adopting the approach used in [Horan 2002a], regression of the GWLF predictions 

on the precipitation, nitrogen and land use was applied.  In order to do this, the GWLF 

runoff predictions were received for alternative combinations of nitrogen, land, and 

precipitation in each watershed.  Then, the regression coefficients and statistics were 

estimated for several specifications of the regression equations.  The selected 

specification has the highest R squired (0.99), and hence, reproduces the GWLF results 

very closely [Carmichael and Evans 2000, Horan et. al. 2002a, b].  This specification is 

presented below: 

( )( )iiiciiiciiii zlNzlNzAg 3
22

2
2

1 ϕϕϕ ++=       (4.28) 

where gi is the expected annual load; zi is mean annual precipitation in the ith watershed; 

ϕ1i, ϕ2i, and ϕ3i are regression coefficients; Ai is scaling (calibration) coefficient; Nc is 

nitrogen concentration in the agricultural runoff.  Nitrogen concentration Nc is estimated 

as the ratio of nitrogen runoff mass ((1-u) ni) and water runoff volume (zi li): 

( )( )
i

ii
ic z

lnuN /1−
= µ          (4.29) 

here µi is a calibration coefficient, and u is the share of applied nitrogen which is taken 

(utilized) by the plants. 

Combining (4.29) and (4.28), the following relationship between agricultural 

input use and pollution load is obtained: 
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Equation (4.30) is highly nonlinear in nitrogen and land use, which seriously 

complicates the computation of the optimized expected social surplus.  To overcome that 

problem, a quadratic expansion of the loading function (4.30) around baseline normalized 

land use level is used: 
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The resulting loading function is quadratic in the normalized input use, which simplifies 

the computations. 

 

4.3. Pollution Fate and Transport to the Chesapeake Bay 
The portions of deliveries in the ith watershed that ultimately reach the Bay are 

modeled using delivery coefficients, iω , so that the total delivered nitrogen loads from 

corn production to the Bay are: 

ii i gL ∑= ω           (4.32) 

where ωi are pollution transport coefficients and gi represents NPS loading to the mouth 

of ith watershed. 

The coefficients of pollution transport (ωi) are taken from U.S. Geological 

Survey’s model called SPAtially Referenced Regressions On Watershed attributes 

(SPARROW) [US GS 2000].  The model relates in-stream water-quality measurements to 

spatially referenced characteristics of watersheds, including contaminant sources and 

factors influencing terrestrial and stream transport.  A variety of factors affects pollution 
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transport process, and following USGS suggestions [2000] model coefficients are 

represented by random variables.   

 

4.4. Economic Damage Costs 
A damage function is used to represent monetary losses due to nitrogen pollution 

of the Chesapeake Bay.  The function is modeled to be exponential in pollution amount:  

τψ LD ⋅=           (4.33) 

where ψ  is a coefficient and the exponent τ is the elasticity of damage cost function.  To 

reflect significant lack of knowledge about environmental damage costs, both parameters 

are represented by random variables.  The variation in the exponent τ captures a part of 

uncertainty about the actual functional form of the damage costs.  According to the 

interval selected for the parameter, the function can be quadratic, close to linear, cubic, or 

have a higher order.   

Below, the sources of data for the model calibration are described.  First, the 

deterministic parameters are discussed.  Next, I describe how the uncertainties are 

modeled and the random variables are generated.   

 

 

4.5. Baseline Data: Deterministic Parameters 
 

4.5.1. NPS modeling  
The data used to calibrate the model are reported in tables 3 – 5 in the appendix 

A.  For the agricultural production, profit and the land supply functions, the data about 
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input and output prices and baseline input use are necessary, along with the values of 

input substitution elasticities and CES distribution parameters.  The baseline corn and 

input prices are reported in Table 3 in appendix A.  Crop production is reported by 

county by PA Agricultural Statistical Service [2003].  To eliminate the stochastic effects 

of weather, five year average corn production data are used.  To derive the watershed 

level of production, the distribution of a watershed lands between counties was used 

[Abler 2002]7.  Specifically, the base production in watershed i (yi) is found as: 

∑ ⋅=
m

mmii yay0          (4.34) 

where i indexes watersheds, m indexes counties, ami denotes the share of the ith 

watershed area in the mth county.   

Agricultural input use levels are based on the input shares in total expenditures 

and the input prices reported by [ERS 2003].  For example, nitrogen use is found from 

the nitrogen share sn: 

( ) ρniyi sypn 00 =          (4.35) 

The input cost shares sn, sl and sm are taken from on Economic Research Service (ERS) 

Cost and Return Survey (see Table A5) [ERS 2003].  The data are for the North-East 

region of the USA, and hence, they may not reflect the specific characteristics of SRB.  

However, this was the only source of data that estimate total expenditures in corn 

production, including both variable and fixed costs.     

The environmental agency’s uncertainty about producer’s control costs and policy 

reactions is modeled by making coefficients and exponents in the corn profit and land 

                                                 
7 An implicit assumption is that corn land is distributed between counties in the same fashion as the total 
watershed land.  
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supply functions random.  Their variation is determined by the distributions of input 

demand and land supply elasticities and the input substitution elasticities, as discussed 

below.     

 

4.5.2. Pollution transport process  
To represent pollution transport process within sub-watersheds (equation 4.31), 

the following parameters are estimated: nitrogen concentration in agricultural runoff (Nc), 

mean annual precipitation (zi), and regression coefficients (ϕi) (see Table A4 in appendix 

A).  Following Abler et. al. [2001], precipitation data for the targeted watersheds were 

taken from [Teigen and Singer 1992].  Regression coefficients were provided by Horan 

[2002c].  The share of nitrogen utilized by plants u is assumed to be 0.7 [Musser et. al. 

1995].  Average nitrogen concentration in the agricultural runoff for the region is Nc = 7 

mg/l [Maryland Department of Natural Resources 1999, Evans 2002-2003].  To 

reproduce this nitrogen concentration value given the baseline nitrogen and fertilizer use, 

precipitation data and the share of nitrogen utilized by plants, a calibration coefficient µi 

is introduced into the equation (4.29).  The value of another calibration coefficient Ai in 

the load function (4.28) is selected to replicate the annual NPS loading to the mouth of 

each sub-watershed as reported by Evans [2002-2003]. Following USGS suggestions, 

coefficients of pollution transport to the Chesapeake Bay (ωi) are modeled as random 

variables and are discussed below.    
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4.6. Imperfectly Known Parameters 
The model captures three aggregated sources of uncertainty in environmental 

policy-making: imperfect knowledge of abatement costs, pollution transport, and damage 

costs.  Uncertainty is modeled by making parameters of the abatement, transport and 

damage cost functions random.  The distributions of the random parameters are based on 

readily available literature sources.  Given that every decision maker has an access to 

these literature sources, minimal information available to decision-makers is modeled.   

There has been little research on the structure of agricultural production and 

agricultural land markets in SRB, and the region does differ substantially from other 

regions of the US.  Accordingly, beyond the restrictions imposed by economic theory, 

there is substantial ignorance about the corn production and land parameters.  To reflect 

capture part of this uncertainty, the values of input substitution elasticities in the CES 

production function are assumed to be uncertain from the regulator’s perspectives with 

the range based on the literature for other regions [Abler et. al. 2001].  Uniform 

distribution is utilized to reflect large degree of uncertainty associated with the 

parameters.  For each possible substitution elasticity value used in CES corn production 

function, there is a corresponding value of the input demand elasticities used in the 

quadratic approximation of the corn profit function.  The input substitution and demand 

elasticities are checked to satisfy the requirements for negative slope of the input demand 

with respect to own prices and concave profit function (β2i < 0, θ2i < 0, and β2i θ2i – Ωi
2 > 

0).   To have positively sloped input demands with respect to the price of the input-

substitute, I select the elasticity values to make Ωi negative.  The values that did not meet 

the requirements were discarded.  The land supply elasticity, γ, is selected based on 

theoretical recommendations [Abler et. al. 2001].  Land supply is inelastic, hence the 
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elasticity values from 0.1 to 0.9 are considered.  Again, there is a large degree of 

uncertainty about the land supply elasticity, and the uniform distribution for γ is utilized. 

I also use a uniform distribution for the damage cost parameters.  The damage 

cost elasticity is selected to make the damage function convex (elasticity is greater than 

one).  On the other hands, the total damage costs are limited to be reasonably low and not 

to drive farmers out of the market, and the maximum elasticity is selected to be three.  

The range of the possible values for the damage costs coefficient is selected in such a 

way that the ex ante model solutions for quantity mechanism reproduces the optimal 

loads defined in the Chesapeake Bay agreement and by US GS.  Initially, the states in the 

Chesapeake Bay made a commitment to reduce nitrogen loading to the Bay by 40% by 

the year 2000 [Chesapeake Bay Program 2003].  However, this objective was not 

achieved.  Belval and Sprague [1999] report that “the flow-adjusted concentration of total 

nitrogen decreased about 12 to 25 percent at the Susquehanna River monitoring station 

during 1985-98.  The unadjusted concentration of total nitrogen also decreased about 20 

percent”.  Given this information, the upper bound of the damage cost coefficient is 

selected to have the optimal load to the Chesapeake Bay L be 60% from the baseline level 

(under the quantity policy).  The lower bound of the coefficient is selected to produce 

20% load reduction under the ex ante quantity control.   

In contrast to the lack of information for assessing abatement costs and damage 

costs, there has been substantial research on the transport of nitrogen in the SRB.  We use 

pollution transport coefficients based on the USGS SPARROW model [Abler et. al. 

2001, Carmichael and Evans 2000], and assume normal distribution for the parameters. 

The variance for the distribution is based on [USGS 2003].  The values of the transport 
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coefficients that were greater than one or smaller than zero were thrown away.  To 

estimate the effect of initial knowledge about the system on policy ranking and 

information value, we compare the results for uniform and normal distributions of the 

transport coefficients.   

The amount of information available about each uncertain parameter is 

characterized by the variance and entropy (see table A7 in appendix A).  The damage cost 

elasticity has the highest uncertainty; while the damage costs coefficient is happen to 

have the lowest uncertainty.     

4.7. Preliminary analysis 
The value of information is high if the policy outcomes and optimal decision 

depend on the values of imperfectly known parameters [Lawrence 1999].  For example, 

the data about environmental damage costs determine how strict the environmental 

regulation should be.  Low damages lead to a soft policy with low pollution control costs, 

while high damage estimate result in a strict regulation with significant abatement costs 

and sizeable damage costs prevented.  Thus, it can be expected, that the value of damage 

cost information is high.  The value of information can also be high if there is significant 

uncertainty in the value of a relevant parameter [Lawrence 1999].  For example, the value 

of perfect information about private pollution control costs can be expected to be higher 

for the case when the estimates range from $5 to $500 per unit of emission reduction than 

for the estimates of $5 to $10 per unit.   

The sensitivity of policy decisions to the values of imperfectly known parameters 

is analyzed based on a deterministic social surplus function (DSS).  The DSS is 

constructed by setting all imperfectly known parameters in social surplus to their mean 
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values.  Then, the function is maximized with respect to nitrogen and land use.  

Deterministic net benefits (DNB) are estimated as the difference in the DSS for the 

baseline and optimized levels of the inputs.  Then, I estimate the change in the optimized 

DSS and DNB due to 50% alteration in each of the uncertain parameters.  This change is 

used as an indicator of the decision sensitivity to the values of uncertain parameters.  This 

analysis is performed for both specifications of the corn profit function.  The results are 

presented in the table below.   

The increase in damage costs elasticity in comparison with its mean value results 

in a large change of the DSS and DNB for both specifications of the agricultural profits 

(see table 4.1), and, hence, the value of damage cost information is expected to be high.  

In the model, the elasticity is the exponent of the damage cost function.  The increase in 

the exponent makes the environmental damages higher for every pound of the nitrogen 

load.  In addition, it makes the marginal damages increase more rapidly.  As a result, 

even a small deviation from the optimal level of regulation results in significant losses in 

environmental quality.  The effect is more significant for the DSS based on quadratic 

approximation of the corn profits, which suggests that value of the data can be higher for 

this specification.     

Among other parameters, the land supply elasticity significantly influences the 

DSS and DNB.  The elasticity is an important parameter of the pollution abatement costs, 

which affects both the corn production profits and the surplus on the land market.  

Consider a quantity control, which leads to an increase in the land demand.  Rise in the 

land supply elasticity decrease the responsiveness of land prices to the increase in land 

demand.  Hence, the policy-induced increase in demand is not associated with significant 
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increase of the costs of corn producers and can lead to rise in their profits.  On the other 

hands, decrease in the elasticity makes land supply prices very sensitive to changes in 

quantities demanded, resulting in significant increase in costs of corn producers from 

increased quantities of land use.   

Table 4.1. Sensitivity of the Optimized DSS and NB to 50% Change in the Values of Uncertain 
Parameter Values (Percent, %) 

Quadratic 
approximation of 
agricultural profit 
function 

CES agricultural 
production function 

Parameter Notation 

DSS NB DSS NB 
Substitution elasticity between 
nitrogen and land in CES, 
increase or decrease  

σNL NA* NA* < 1 < 1

Substitution elasticity between 
composite mechanical and 
biological inputs, increase or 
decrease  

σMB NA* NA* < 1 < 1

Nitrogen demand elasticity in 
quadratic expansion of profit 
function, increase or decrease  

εN < 1 < 1 NA* NA*

Land demand elasticity in 
quadratic expansion of profit 
function, increase or decrease  

εL < 1 < 1 NA* NA*

Nitrogen demand elasticity, cross-
price,  in quadratic expansion of 
profit function, increase or 
decrease  

εNL < 1 < 1 NA* NA*

Land supply elasticity  εLS +/- 16.7 <1 +/- 16.7 +100% for 
increase, 

-22.9% for 
decrease

Coefficient of the damage 
function, increase or decrease 

ω1 – ω8 < 1 < 1 < 1 < 1

Each of the pollution transport 
coefficients, increase or decrease 

ψ < 1 < 1 < 1 < 1

Damage cost elasticity 
• Increase 
• Decrease 

τ   
-51.3 

< 1

 
>100% 

<1

 
-37.7 

< 1 

 
-33% 

< 1
* In the sensitivity analysis, I do not account for the link between agricultural input demand and input 
substitution elasticities for the two functional forms of the corn profit function considered.   
 

Other uncertain parameters do not significantly alter the values of DSS and DNB 

in these settings; however, the value of the data about their true value can still be high.  
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To show this, I estimated the sensitivity of the DSS and DNB in slightly different 

settings.  Now, the DSS is constructed and the DNB is estimated given the maximum 

damage costs elasticity, while other parameters are still held on their mean values.  The 

results are presented in Table 4.2.  

Table 4.2. Percent Change in the Optimal DSS and NB, Given Damage Cost Elasticity is Maximum 
and Other Parameters are on the Mean Values 

Quadratic approximation 
of agricultural profit 
function 

CES agricultural 
production 
function 

Parameter Notation

Percent change 
in the SS based 
on  

Percent 
change 
in NB 

Percent 
change 
in the 
SS 
based 
on  

NB 

Nitrogen and land substitution 
elasticity for the CES corn production 
function, 

• Increase  
• Decrease 

σNL NA* NA*  
 
 

+12.1 
-12.1 

 
 
 

+10.5 
-18.2

Substitution elasticity for biological 
and mechanical inputs in CES corn 
production function,  

• Increase  
• Decrease  

σMB NA* NA*  
 
 
 

<1 
<1 

 
 
 
 

<1 
<1

Nitrogen demand elasticity for the 
quadratic corn profit function,  

• Increase 
• Decrease 

εN  
 
 

-66.2 
+26.5

 
 
 

-4.6 
+1.8 

 
 
 

NA* 
NA* 

 
 
 

NA* 
NA*

Land demand elasticity for the 
approximated corn profit function,  

• Increase 
• Decrease 

εL  
 
 

-1.5 
+1.0

 
 
 

<1% 
<1% 

 
 
 

NA* 
NA* 

 
 
 

NA* 
NA*

Nitrogen demand elasticity with 
respect to land price for the quadratic 
corn profit function,  

• Increase 
• Decrease 

εNL  
 
 

-9.1 
+4.0

 
 
 

+0.3 
-0.6 

 
 
 

NA* 
NA* 

 
 
 

NA* 
NA*

Land supply elasticity, 
• Increase 
• Decrease 

εLS  
-62.5 
+28.5

 
-0.4 
+0.2 

 
-22.4 
+22.3 

 
-46.0 

+145.5
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Quadratic approximation 
of agricultural profit 
function 

CES agricultural 
production 
function 

Parameter Notation

Percent change 
in the SS based 
on  

Percent 
change 
in NB 

Percent 
change 
in the 
SS 
based 
on  

NB 

Pollution transport coefficient, 
watershed 202,  

• Increase 
• Decrease 

ω1  
 

-2.2 
+4.9

 
 

+22.8 
-24.2 

 
 

-1.5 
+2.8 

 
 

-1.1 
+2.2

Pollution transport coefficient, 
watershed 204,  

• Increase 
• Decrease 

ω2  
 

-10.2 
+19.0

 
 

+35.0 
-37.4 

 
 

-5.9 
+10.6 

 
 

-4.4 
+8.3

Pollution transport coefficient, 
watershed 207,  

• Increase 
• Decrease 

ω3  
 

-6.1 
+8.8

 
 

+28.2 
-23.8 

 
 

-6.1 
+5.1 

 
 

-2.6 
+3.8

Pollution transport coefficient, 
watershed 214,  

• Increase 
• Decrease 

ω4  
 

-1.7 
+3.1

 
 

+10.2 
-10.3 

 
 

-1.0 
+1.7 

 
 

-0.8 
+1.3

Pollution transport coefficient, 
watershed 215,  

• Increase 
• Decrease 

ω5  
 

-3.7 
+4.8

 
 

+16.2 
-12.4 

 
 

-2.2 
+2.6 

 
 

-1.6 
+2.1

Pollution transport coefficient, 
watershed 302,  

• Increase 
• Decrease 

ω6  
 

-1.9 
+3.3

 
 

+10.0 
-10.0 

 
 

-1.1 
+1.8 

 
 

-0.9 
1.5

Pollution transport coefficient, 
combined watershed 301+ 401,  

• Increase 
• Decrease 

ω7  
 

-11.6 
+12.1

 
 

+18.4 
-16.3 

 
 

-7.5 
+7.5 

 
 

-4.4 
+5.0

Pollution transport coefficient, 
combined watershed 402,  

• Increase 
• Decrease 

ω8  
 

-4.0 
+4.9

 
 

+11.9 
-11.0 

 
 

-2.5 
+2.9 

 
 

-1.6 
+2.0

Damage cost coefficient 
• Increase 
• Decrease 

Ψ  
-14.1 
+21.9

 
+52.7 
-52.1 

 
-8.5 

+12.8  

 
-5.9 
+9.5

  * In the sensitivity analysis, I do not account for the link between agricultural input demand and input 
substitution elasticities for the two functional forms of the corn profit function considered.   

For the maximal damage cost elasticity, the sensitivity of the DSS and DNB to the 

values of transport coefficients, input demand and substitution elasticities, as well as 
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damage costs coefficient increases.  Hence, collection of data about each of the parameter 

can significantly improve policy performance.   

The damage cost elasticity (i.e., exponent of the function) can be interpreted as 

the determinant of the functional form of the damage costs, e.g., linear, quadratic, or 

cubic.  The increase in DSS and DNB sensitivity with rise in the damage cost curvature 

indicates the importance of the knowledge about the true functional forms for estimating 

information values.      

The DNB are negligible for the case when all the parameters are set on their mean 

values.  These estimates fail to account for the significant effect of variation in the 

damage and abatement cost parameters on the regulatory outcome.  Hence, the results of 

the deterministic analysis based on the mean values can not be used to guide the policy 

decisions. 

 

4.8. Simulations 
The terms in the expression for the expected social surplus (3.2) are highly 

nonlinear with respect to the uncertain parameters, which makes it difficult to compute 

the expected value of the social surplus analytically.  Three methods of numerical 

approximation of the expected value were considered: Monte Carlo, Latin Hypercube, 

and Gaussian quadrature.  The Monte Carlo method involves calculating the expected 

value as a sample mean of the function [Rubinstein 1981]: 

( )[ ] ( )∑∫ ∫
=

≈⋅⋅
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      (4.36) 

where f(x,θ,η) is an arbitrary function of a variable x and two random parameters θ and η¸ 

and M is the sample size (i.e., the number of distinct values of the random parameters θ 
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and η analyzed).  The method is conceptually simple and theoretically sound [Bobba et. 

al.  2000, Hession et. al. 1996, Kao and Hong 1996].  It allows statistical evaluation of 

the effects caused by uncertainties on the basis of the distribution of simulation results.  

For each sample size M, it is possible to estimate the confidence interval around the 

approximation (4.36), which includes the true value of the integral [Bobba et. al.  2000, 

Hession et. al.  1996, Kao and Hong 1996].  The only disadvantage of the method is the 

large sample size required for reliable approximation, which implies long computer 

running time.   

Latin hypercube procedure is based on the same principle of approximation as 

Monte Carlo (equation (4.36)).  However, instead of drawing the values of parameter θm 

and ηm randomly¸ the method involves the division of the parameters’ distributions into 

intervals, then paring the intervals from different distributions in random manner, and 

finally, drawing one random sample from each set of intervals.  In this way, it is insured 

that the whole range of random parameter values is covered even with a small sample 

size [Nordhaus and Popp 1997].   

Gaussian quadrature estimates an integral of a function f(x) as a sum of the 

function values for M points x, ηm multiplied by the weights cm [Srivastava 2002]:  
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=
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      (4.37) 

The weights cm and the points (x, ηm) are selected to make the approximation exact when 

the function f(.) is a polynomial of the order (2 n – 1) or lower [Srivastava 2002].  The 

approximation is very easy to use and allows close approximation of a function with a 

very small sample size.  However, when the function is very nonlinear and involves many 

random parameters, if is getting difficult to find the weights cm for the approximation.  
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After comparison of the methods, the Monte Carlo approximation was selected.  

Although the Latin hypercube allows accurate approximations with much smaller sample 

size, the current model has an extra complication, which prohibits using the method.  The 

draws of imperfectly known parameters (such as input substitution and demand 

elasticities) are required to satisfy extra conditions (such as concavity of the agricultural 

profit function and negativity of the slopes of input demand).  These extra requirements 

complicate the random pairing of the parameter draws required for Latin hypercube.  In 

addition, for several draws of random variables, the objective function (4.2-4.3) becomes 

very flat, and the optimization program fails to find a solution.  This means that some 

ranges of parameter values are will not be in the Latin Hypercube approximation.  The 

Gaussian quadrature was rejected because the model includes 12 random parameters8 and 

16 independent variables9, which makes selection of the weights cm and estimation points 

ηm very is complicated.   

Based on the Monte-Carlo approach, I compute the expected social surplus (3.2) 

as the sum of the social surplus values for randomly drawn values of the uncertain 

parameters divided by the total number of draws M: 
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For the baseline information scenario (a), the policy performance is computed by 

maximizing the ES (4.38) with respect to the policy choices x* or t* subject to the 

farmers’ responses to the policies (see equations 3.2 – 3.3): 

                                                 
8 This number includes 2 damage cost parameters, 8 transport coefficients, and 2 input substitution 
elasticities.  There are more random parameters in the model.  However, some of them can be expressed in 
terms of others, e.g., input demand elasticities can be expressed as functions of input substitution 
elasticities.   
9 Two inputs (nitrogen and land) in each of the sub-watershed 
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ESJ
xx 81 ,...,

* max=           (4.39) 

For the other information scenarios (b - d), I calculate the expected social surplus 

as an average of the optimal performances of the policies designed with information.  For 

example, the expected policy performance for the scenario with abatement cost, transport, 

and damage cost information is: 
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where j indexes randomly drawn values of abatement cost parameters. 

The sample size M was selected to produce the policy performance results which 

do not depend on the sample size.  For the baseline information scenario (a), six sample 

sizes were analyzed: M = 100, 200, 500, 1000, 1500, 3000 and 5000 (see Table A8).  The 

discrepancies between the results for M = 1500, M = 3000 and M = 5000 were 

approximately 1%.  I choose the sample size M = 1500 for all scenarios.  For scenarios 

(b) through (d), the 95% confidence intervals are calculated to acknowledge the possible 

deviation of the true values of the expected social surplus from the estimate.  The 

confidence interval is  estimated as the mean of the optimal ES values plus/minus the 

product of the estimated standard deviation sM and the t-value [Lane 2001]: 

MM stJJstJ ⋅+≤≤⋅− ****** .    

Several programming languages were tried for computing the model: 

Mathematica (version 4.2), GAUSS (version 3.22), MatLab (version 12), and Borland 

C++.  GAUSS 3.22 (Advanced Mathematical and Statistical System; Aptech 2003) was 

selected because of: a) very powerful in-built constrained optimization routine, which 

allows nonlinear constraints and objective function (e.g., Mathematica works best only 
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with linear constraints); b) relatively small time of computing (both MatLab and 

Mathematica are much slower); c) simplicity of debugging the programs (for comparison, 

it is more difficult to debug a program in Borland C++).  However, Mathematica has 

random number generators for different types of distributions, while GAUSS can 

generate random numbers only from standard normal distribution and uniform 

distribution on [0, 1] interval.  So, the samples of random variables were generated in 

Mathematica.   
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Chapter 5.  Results 
 

This chapter presents the results for: a) the efficiency of nitrogen and land use 

taxes and aggregate trading quotas given alternative uncertainty structures; b) the value of 

alternative types of information for the alternative policy instruments; c) the effects of 

spatial scope (number of watersheds regulated) and differentiation on expected policy 

performance and information value; and d) the effects of the initial knowledge of 

decision-makers on the policy efficiency and information values.   

The optimal level of taxes and quotas on the land and fertilizer use depend on the 

structure of uncertainty facing the decision maker, and the assumption about the 

functional relationships between economic and biophysical parameters in the region.  For 

the social surplus (SS) with quadratic corn profits, optimal taxes on nitrogen reach up to 

+300% of the price across alternative information scenarios and values of the uncertain 

parameters.  Land can be subsidized for up to 500% of the baseline price.  Optimal 

aggregate fertilizer quota is lower than the baseline level of nitrogen use.  On the 

contrary, the optimal aggregate land use quotas are higher than the watersheds’ baseline 

land use.  Across alternative information scenarios, the fertilizer use can be required to be 

decreased by up to 70%, and land use quotas can be up to 30% higher than the baseline 

land use.  High land use quotas and subsidies are due to the assumptions that land and 

fertilizers are substitutes in the production process, and hence, increase in the land use 

can decrease the fertilizer application without decline in producers’ profits.  In addition, 

an increase in the land use given fixed/reduced fertilizer application lessens the average 

rate of nitrogen use per acre.  As a result, average runoff per acre also decreases.   
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Just the quantity control is analyzed for the SS function based on CES corn 

production.  Both land and nitrogen uses decreases after policy imposition in comparison 

with the baseline level.  However, the reduction in nitrogen use is more significant than 

the decrease in land use.  Depending on the realized values of the imperfectly known 

parameters across alternative information scenarios, nitrogen use declines by up to 50%, 

while the land increases by at most 30%.   

5.1. Relative Policy Ranking  
The relative policy ranking is affected by numerous characteristics of 

environmental and economic systems, and, in general, can not be analyzed analytically.  

The empirical analysis of nitrogen- and land-use based policies in SRB is summarized in 

Table 5.1 below.  The expected net benefits for the alternative policy mechanisms (rows) 

and information scenarios (columns) are presented.  Expected net benefits (ENB) are 

estimated as a difference between expected social surplus with and without regulations.   

Land and fertilizer taxes outperform the quantity controls for the baseline (ex 

ante) information set by $1.5 million (12% of expected net benefits for the quantity 

controls).  The taxes also dominate the quantity controls for the pollution transport 

information scenarios (the difference in expected net benefits is 11.1%).  The 

mechanisms perform the same is abatement costs (or ex post) information is expected to 

become available.  With improved damage costs information, the difference in policies’ 

expected net benefits is not statistically significant.   
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Table 5.1. Net Benefits for Alternative Policy Regimes, in million dollars 

Information scenarios  
Ex 
ante 

Pollution 
transport 

Abatement 
costs 

Damage costs Ex 
post 

Input quantity 
controls 

12.3 12.6 13.7 19.2 20.1

95% confidence interval  12.5-12.6 13.2-14.2 18.6-19.7 19.4-
20.8 

Input taxes 13.8 14.0 13.7 19.3 20.1
95% confidence interval  14.0-14.1 13.2-14.2 18.7-19.9 19.4-

20.8 
Difference 
between the 
policies 

1.5 1.4 0 Not statistically 
significant 

0

 

The different expected net benefits for the mechanisms are due to the economic 

responses of the polluters to the alternative management schemes.  With the quantity 

control, the aggregate level of land and fertilizer use for a watershed can not be adjusted.  

In contrast, with input taxes, the level of fertilizer and land use is adjusted among 

watersheds according to the privately held production profit information.  The 

redistribution of the load reductions among watersheds given tax regulation decreases the 

impact of pollution management on the producers’ profits.  On the other hand, this 

adjustment makes the environmental outcome of the policy more uncertain.  For the 

quantity control, the variation of environmental damages is due to the uncertainty in the 

pollution transport processes.  For the price control, the imperfect knowledge of the 

polluters’ choices also contributes to the variation in the policy environmental impact.  In 

current research, the benefits of increased variability (in terms of expected producer 

profits) outweigh the costs of increased variability (in terms of expected damages) 

causing expected social surplus to be higher for the tax control than for the quantity 

control.   

The same performance of the instruments for abatement costs and complete 
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information scenarios is in line with the Weitzman [1974] results.   

5.2. Value of Information 
The study shows that information increases the expected net benefits of 

environmental policies.  However, the increase depends on the type of information 

collected and on the policy mechanism used.   

The value of information for alternative policy instruments and information types 

is summarized in table 5.2.  The value of information is measured in absolute terms 

(million dollars) and in percents with respect to the ex ante expected net benefits for the 

respective instruments.  The value of information in absolute terms is simply the 

difference in expected net benefits between the given scenario and the ex ante scenario.   

Table 5.2.  Expected Value of Information, million dollars and (percents) 

Information scenarios Policy instrument 
Pollution 
transport 

Abatement 
costs 

Damage 
costs  

Ex 
post 

Input quantity 
controls 

0.3 
(2.4)

1.4
(11.4)

6.9 
(56.1) 

7.8
(63.4)

Input taxes 0.2
(1.4)

close to zero
(close to zero)

5.5 
(39.9) 

6.3
(45.7)

Difference 0.1 1.4 1.4 1.5
 

First, let me consider the value of information by data type.  The perfect damage 

cost information has the highest value for both policy mechanisms. This information is 

expected to improve the policy performance by 56% (for the quantity controls) and 40% 

(for land and fertilizer taxes).  As suggested in the preliminary analysis in the previous 

chapter, the significant information value can be due to a high sensitivity of policy 

decisions to the damage cost elasticity, as well as large uncertainty associated with the 

parameter (see entropy values in Table A7).   
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The value of the damage cost information can also be influenced by the values 

selected for abatement cost parameters.  Table 5.3 summarizes an experiment where the 

damage cost information was estimated given deterministic abatement costs and the 

pollution transport coefficients and quadratic corn profits.  The information value 

increases with the increase in nitrogen demand elasticity and decrease in land supply 

elasticity.  Although these results were computed for a very small sample n = 100, which 

is not enough to account for all possible values or random parameters, this analysis still 

shows that the value of damage cost information is conditional on abatement cost 

parameters.   

Table 5.3. Effects of 10% change in the Land and Fertilizer Demand and Supply Elasticities on the 
Damage Cost Information Value (Sample Size = 100) 

Parameter Notation Percent change in the 
value of damage cost 

information 
Nitrogen demand elasticity,  

• Increase 
• Decrease 

εN 
+22.5
-27.5

Land demand elasticity, 
Increase or Decrease 

εL <1

Nitrogen demand elasticity 
with respect to land price,  

• Increase 
• Decrease 

εNL 

+4.7
+1.9

Land supply elasticity, 
• Increase 
• Decrease 

εLS 
-3.5

+16.4
 

 Now let me consider how the policy mechanism affects the value of information.  

This difference is presented in the final row (labeled Difference) in Table 5.2.  

Information has higher value for the quantity controls than for the tax controls.  This can 

be examined in line with research by Abrahams and Shortle [1997].  The mechanisms 

perform the same given perfect information.  Hence, by definition, the VOI is higher for 
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the mechanism that performs worse ex ante. In other words, the same factors that 

influence the ex ante policy performance, determine the difference in the information 

value.   

For the quantity control, the abatement cost information has higher value than the 

pollution transport data while for the input taxes the ranking is reversed.  The result 

emphasizes that the information collection priorities should be contingent on the 

management option considered.   

The model used in the research is nonlinear; it involves many interrelated 

economic and biophysical parameters.  This complexity does not allow more detailed 

study of the VOI determinants.  Further investigation is required to explain the 

differences in the VOI for the mechanisms.   

5.3. Policy spatial scope: the number of watersheds regulated  
Transaction costs associated with policy monitoring and enforcement can be 

reduced by the decrease of the geographic scope of a policy, i.e., regulating a subset of 

watersheds instead of the whole region.  However, decrease in the policy spatial scope 

reduces policy efficiency.  Below, the differences in the policy efficiency are analyzed 

for the regulation of the entire SRB region, or just one, two, or three SRB watersheds.  

The watersheds targeted by regulation (i.e., the policy spatial scope) are chosen based on 

the loadings to the mouth of each watershed.  That is, the watersheds are divided into 

“more polluting” and “less polluting” types, and the “more polluting” watersheds are 

regulated first.  The expected net benefits for quantity and tax controls are summarized in 

Tables 5.4 and 5.5.   
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Table 5.4. Expected Net Benefits for Quantity Controls with Different Spatial Targeting, million 
dollars 

Information scenarios Watersheds 
Ex 
ante  

Pollution 
transport 

Abatement 
costs 

Damage 
costs  

Ex 
post 

8 12.3 12.6 13.7 19.2 20.1
95% confidence 
interval 

 12.5-12.6 13.2-14.2 18.6-19.7 19.4-20.8 

3 9.6 9.8 10.9 16.4 17.5
95% confidence 
interval 

 9.7-9.9 10.4-11.4 15.4-17.3 16.5-18.5 

2 6.9 7.1 8.1 13.3 14.4
95% confidence 
interval 

 7.0-7.2 7.6-8.6 11.9-15.8 13.0-15.9 

1 4.3 4.5 5.2 9.4 10.3
95% confidence 
interval 

 4.4-4.6 4.7-5.7 7.4-11.5 9.2-11.5 

 

The increase in the scope of environmental control from the most polluting to less 

environmentally harmful watersheds increases the expected net benefits, but at a 

decreasing rate.  In the model, regulation of one the most polluting watershed contributes 

approximately 40% of total expected net benefits from regulation in the region, and the 

management of three the most polluting watersheds accounts for about 80%.  These 

percents are almost the same for both policy mechanism and the information scenarios.   

Table 5.5.  Expected Net Benefits for Tax Regulations with Different Spatial Targeting, million 
dollars 

Information scenarios Watersheds 
Ex 
ante  

Pollution 
transport 

Abatement 
costs 

Damage 
costs  

Ex 
post 

8 13.8 14.0 13.7 19.3 20.1
95% confidence 
interval 

 14.0-14.1 13.2-14.2 18.7-19.9 19.4-20.8 

3 11.1 11.4 10.9 15.6 17.5
95% confidence 
interval 

 11.4-11.5 10.4-11.4 14.4-16.7 16.5-18.5 

2 8.3 8.5 8.1 11.2 14.4
95% confidence 
interval 

 8.5-8.6 7.6-8.6 9.4-12.9 13.03-
15.9 

1 5.5 5.6 5.2 8.6 10.3
95% confidence 
interval 

 5.7-5.7 4.7-5.7 6.3 -10.9 9.2-11.5 
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The low-polluting watersheds contribute less to the net benefits from regulations.  

Hence, to justify their control, the transaction costs associated with regulation of an 

additional watershed should be relatively small.  For example, for ex ante quantity 

control, these costs should not exceed approximately $600 thousands.  This estimate is 

found by subtracting expected net benefits for 3 watersheds from expected net benefits 

for 8 watersheds, and dividing this difference by the difference in the number of 

watersheds controlled (five): 

($12.3 million – $9.6 million) / 5 watersheds ≈  $600 thousands per watershed 

If the transaction costs of regulating an extra watershed are high (around $3 millions), the 

control of only the most polluting watershed is justified.   

Comparison of efficiencies of the tax and quantity policies shows that the relative 

ranking of the policy instruments is independent from the policy spatial scopes.  The tax 

mechanism performs better or at least as good as the quantity controls for all information 

scenarios and policy spatial scopes. 

The policy scope above is selected based on the loadings to the mouth of a 

watershed.  An alternative criterion can be the estimate of the loading to the Chesapeake 

Bay, the primary area of the policy concern.  For example, let me consider the quantity 

controls.  For the watershed 207 (the second most polluting), the nitrogen load to the 

mouth of the watershed is 5,456 ton (see Table 5.6).  Although the watershed 202 is less 

polluting (3,667 ton), it contributes slightly more to the expected net benefits (8.3% 

versus 8.0%).  The result is the same for the tax control (see Table 5.7).  These outcomes 

can be explained by the difference in the shares of watersheds’ loads transported to the 

Chesapeake Bay.  On average 71% of the load from the watershed 202 reaches the Bay, 
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while for the watershed 207 this share is only 58% (compare the mean transport 

coefficients for the watersheds in tables 5.6and 5.7).  Hence, the loadings to the Bay can 

be better correlated with the benefits from watershed regulation.   

Unfortunately, both the loadings to the mouth of a watershed and to the 

Chesapeake Bay are not easily observable, which complicates their use in the policy 

design.    

Table 5.6.  Improvement in Expected Net Benefits from Quantity Regulation of an Extra Watershed 
(as Percent From No Regulation Case) 

Information scenarios Pollution transport 
coefficient 

watersheds 

Ex 
ante, 
%  

Pollution 
transport, 
% 

Abatement 
cost, % 

Damage 
cost, %  

Ex post, 
% 

Average 
total 
load 
(ton) 

mean variance 
the rest 8.6 7.6 7.8 7.7 7.2 10,979 from 

0.560 
to 

0.660 

from 
0.068 to 

0.137 

#202 8.3 7.4 7.8 8.4 8.5 3,667 0.710 0.110 
#207 8.0 7.2 7.9 10.8 11.3 5,456 0.581 0.160 
#204 13.5 14.0 16.3 29.4 32.3 8,926 0.731 0.114 

 

Table 5.7.  Improvement in Expected Net Benefits from Tax Regulation of an Extra Watershed (as 
Percent from No Regulation Case) 

Information Scenarios Pollution transport 
coefficient 

watersheds 

Ex 
ante, 
%  

Pollution 
transport, 
% 

Abatement 
cost, % 

Damage 
cost, %  

Ex 
post, 
% 

Average 
total load 
(ton) 

mean variance 

the rest 7.5 7.1 7.8 11.6 7.2 10,979 from 
0.560 

to 
0.660 

from 
0.068 to 

0.137 

#202 7.6 8.1 7.8 13.7 8.5 3,667 0.710 0.110 
#207 8.0 8.0 7.9 8.1 11.3 5,456 0.581 0.160 
#204 17.0 17.6 16.3 26.7 32.3 8,926 0.731 0.114 
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5.4. Regulation of the most polluting watershed 
If the transaction costs of a policy monitoring and enforcement are high, 

regulating just the most polluting watershed is justified.  The analysis of the expected net 

benefits and information value for regulation of the watershed 202 (the watershed with 

the highest in the SRB loading to the mouth) are summarized in the Tables 5.8 – 5.10.  

Table 5.8.  Expected Net Benefits for the Quantity Controls of the Most Polluting Watershed, million 
dollars 

Information scenarios Policy instruments 

Ex 
ante 

Pollution 
transport 

Abatement 
costs 

Damage costs Ex 
post 

Input quantity 
controls 

4.3 4.5 5.2 9.4 10.3

95% confidence interval  4.4-4.6 4.7-5.7 7.4-11.5 9.2-
11.5 

Input price controls  5.5 5.6 5.2 8.6 10.3
95% confidence interval  5.6-5.7 4.7-5.7 6.3-10.9 9.2-

11.5 

Difference between tax 
and quantity controls 

1.1 1.1 0 Not statistically 
significant 

0

  

 Table 5.8 presents the expected net benefits for the alternative policy instruments 

and information scenarios.  The difference between the ENB of tax and quantity 

mechanisms is small in absolute terms (compare last rows of the tables 5.8 and 5.1).  

However, this difference is significant if measured in terms of percent improvement from 

the no-regulation case.  For the entire SRB region, the switch from quantity to tax control 

result in approximately 12% improvement in the expected net benefits, while for the 

regulation of one watershed the difference increases to approximately 25%.      

VOI is presented in tables 5.9 and 5.10.  Table 5.9 summarizes the results in 

absolute terms, and the next table describes the value of information in percent from the 

ex ante expected net benefits of the respective instruments.  The relative value of 

different information types is the same for the regulations of one-watershed and the entire 
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SRB region (compare tables 5.1 and 5.8).  However, in general, the information 

collection is more important for the one-watershed regulation.  For one-watershed policy, 

perfect information collection is expected to improve the policy performance by up to 

140% from the ex ante value, while for the whole region information collection is 

expected to increase ENB by 63% maximally.   

Table 5.9.  Value of Information for the Regulation of One Watershed, Million Dollars 

Information scenario   
Pollution 
transport 

Abatement 
cost 

Damage 
costs 

Ex 
post 

Input quantity 
controls 

0.2 0.9 5.1 6.0

Input taxes 0.1 close to zero 3.1 4.9
Difference 0.1 0.9 2.0 1.1
 
Table 5.10.  Value of Information for the Mechanisms Targeted on the Most Polluting Watershed, as 
a Percent from of Ex Ante Expected Net Benefits 

Information scenario   
Pollution 
transport 

Abatement 
costs 

Damage 
costs 

Ex 
post 

Input quantity 
controls 

4.2 20.6 118.1 139.4

Input taxes 3.5 close to zero 57.1 89.7
 

5.5. Spatial Differentiation  
To decrease the costs required for developing unique policies and monitoring 

schemes for each SRB watershed, a uniform policy can be applied, which prescribes the 

same level of regulation (i.e., land and fertilizer taxes/quotas) for all SRB watersheds.  

However, if the watersheds are highly heterogeneous in their abatement costs or pollution 

delivery characteristics, making the policy uniform significantly decreases the expected 

net benefits of the regulation.  Hence, balancing the reductions in the transaction costs 
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and expected net benefits is important for deciding the degree of the policy 

differentiation.  The expected net benefits of uniform and differentiated tax and quantity 

controls in the SRB are compared in the tables 5.11 – 5.13.   

 Table 5.11 presents the expected net benefits of uniform tax and quantity controls 

for alternative information scenarios.  The relative policy instrument ranking is not 

influenced by the degree of policy spatial differentiation.  For differentiated (table 5.1) 

and uniform (table 5.11) policies, tax control performs better or at least no worse than the 

quantity control.  The difference between the expected net benefits of the policies is 

similar for both uniform and differentiated policies.   

Table 5.11.  Expected Net Benefits for Uniform Tax and Quantity Controls, Million Dollars 

Information Scenarios  
Ex ante Pollution 

transport 
Abatement 
cost 

Damage 
costs 

Ex post 

Quantity, 
Uniform 

12.1 12.2 13.5 19.0 20.0

95% confidence 
interval 

 12.1 -12.3 13.0-14.0 18.3-19.6 19.3-20.7 

Tax, Uniform 13.6 13.7 13.5 19.3 20.0
95% confidence 
interval 

 13.6-13.8 13.0-14.0 18.7-19.9 19.3-20.7 

Difference 1.5 1.5 0 Not 
statistically 
significant

0

 

Overall, the change in policy spatial differentiation has minor effect on policy 

performance.  The difference in expected net benefits for the ex ante uniform and 

differentiated policies is $0.2 million (see table 5.12 and 5.13).  For pollution transport 

information scenario, the difference is slightly higher - $0.4 millions and by $0.3 millions 

for quantity and tax control respectively.  For other information scenarios, differentiated 

control also outperforms the uniform policy; however, the difference is not statistically 
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significant.   

Table 5.12.  Expected Net Benefits for Differentiated and Uniform Quantity Control, Million Dollars 

Information scenarios  
Ex ante Pollution 

transport 
Abatement 
cost 

Damage 
costs 

Ex post 

Differentiated 12.3 12.6 13.7 19.2 20.1
95% confidence 
interval 

 12.5-12.6 13.2-14.2 18.6-19.7 19.4-20.8 

Uniform 12.1 12.2 13.5 19.0 20.0
95% confidence 
interval 

 12.1 -12.3 13.0-14.0 18.3-19.6 19.3-20.7 

Difference 0.2 0.4 Not 
statistically 
significant

Not 
statistically 
significant

Not 
statistically 
significant

 

 The relatively small difference in expected net benefits for uniform and 

differentiated policies can be partially explained by the low degree of heterogeneity 

among watersheds captured in the model.  Only two environmental impact parameters are 

different among the watersheds: loadings to the mouth of each watershed and pollution 

transport coefficients.  In turn, the heterogeneity in abatement cost parameters is captured 

only by different baseline levels of land and fertilizer uses and the land prices.  In reality, 

the SRB watersheds are more heterogeneous in both the economic and pollution transport 

characteristics.  For example, the elasticities of agricultural land and fertilizer demand 

and supply can vary among watersheds.  In response to environmental policy, the farmers 

in some watersheds can choose to alter their crop rotations.  In other watersheds, the price 

of nitrogen fertilizer can change, causing further changes in corn production.  

Unfortunately, there were no data found that would allow modeling the whole range of 

differences in abatement costs and environmental impact types among the watersheds.  

As a result, the watershed heterogeneity is smaller in the model than it is in the real life.  

This simplification influences the relative performances of uniform versus differentiated 
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policies and makes it smaller than it is in reality.   

Table 5.13.  Expected Net Benefits for Differentiated and Uniform Tax Control, Million Dollars 

Information scenarios  
Ex ante Pollution 

transport 
Abatement 
cost 

Damage 
costs 

Ex post 

Differentiated 13.8 14.0 13.7 19.3 20.1
95% confidence 
interval 

 14.0-14.1 13.2-14.2 18.7-19.9 19.4-20.8 

Uniform 13.6 13.7 13.5 19.3 20.0
95% confidence 
interval 

 13.6-13.8 13.0-14.0 18.7-19.9 19.3-20.7 

Difference 0.2 0.3 Not 
statistically 
significant

Not 
statistically 
significant

Not 
statistically 
significant

 

The value of information is not significantly affected by the degree of the policy 

differentiation (compare tables 5.2 and 5.3 with tables 5.14 and 5.15).  The value of 

pollution transport information is slightly smaller for the uniform policy than for the 

differentiated one, while the value of the damage cost information is somewhat higher.  

The smaller value of the pollution transport information is due to the fact that the 

information about environmental impacts is underutilized for the uniform policies.  The 

uniform policy prescribes the same taxes / aggregate quotas for all watersheds.  Hence, 

the data about the watersheds’ pollution transport parameters can be used to alter the 

overall level of the policy, but not to adjust the policy levels according to the unique 

characteristics of a watershed.  Quite the opposite, for the differentiated policies, the data 

can be used to adjust both the overall policy level, and the regulation of each particular 

watershed.  As a result, the value of pollution transport information is higher for the 

differentiated regulation.   
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Table 5.14.  Expected Value of Information for Differentiated and Uniform Quantity Control, 
Million Dollars 

Information scenarios  
Pollution 
transport 

Abatement 
cost 

Damage 
costs  

Ex 
post 

Quantity, 
Differentiated 

0.3 1.4 6.9 7.8

Quantity, Uniform 0.1 1.4 6.9 7.9
 

Table 5.15. Expected Value of Information for Differentiated and Uniform Tax Control, Million 
Dollars 

Information scenarios  
Pollution transport Abatement cost Damage Ex post 

Tax, Differentiated 0.2 close to zero 5.2 6.3 
Tax, Uniform 0.1 close to zero 5.7 6.4 

 

 

5.6. Alternative functional forms of the agricultural profits  
The true functional form of the corn profits is not perfectly known.  The decision 

makers can try to approximate the function or to assume a particular functional form 

based on their prior knowledge.  In both cases, expected net benefits and information 

values are contingent on the functional form selected, and the effect of the assumption on 

policy decisions can be substantial.  In my model, I compare the expected net benefits 

and value of information for quadratic expansion and CES profit functions.  The analysis 

is performed only for the land and fertilizer quantity controls, because modeling tax 

controls for CES production is a very computationally intensive task.  Tax control 

requires incorporation of possible polluters’ responses to the policy.  In the model, these 

polluters’ responses are represented as constraints to the regulators’ policy decision 

problem.  The number of possible responses is proportional to the number of possible 

values of uncertain parameters.  That is, for the sample size M = 1500, there are 1500 
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constraints in the model, and each constraint is nonlinear.  There is no software available 

that can easily optimize an objective function subject to this number of nonlinear 

constraints.  

The expected net benefits for the quantity policy are significantly altered by the 

assumption about the corn profit function.  However, this effect depends on the 

information scenario considered.  For the ex ante scenario, the difference in expected net 

benefits is 5.2 millions (i.e., approximately 40%, see table 5.16).  The difference 

decreases, but is still significant for the pollution transport and abatement costs 

information scenarios.  Finally, for the damage costs and the ex post information 

scenarios, the difference is 13% and 10% respectively.  For these information scenarios, 

both functional forms give a wide range of results depending on the value of uncertain 

parameters considered.  As a result, the 95% confidence interval for ENB is wide and the 

difference between policies is not statistically significant.    

Table 5.16.  Expected Net Benefits for Quantity Control Given Different Assumptions about the 
Functional Form of the Agricultural Profit, million dollars 

Information scenarios  
Ex 
ante 

Pollution 
Transport 

Abatement 
costs 

Damage costs  Ex post 

Quadratic 
expansion 

12.3 12.6 13.7 19.2 20.1

95% confidence interval  12.5-12.6 13.2-14.2 18.6-19.7 19.4-20.8 

CES 17.5 17.6 17.9 21.7 22.0
95% confidence interval  17.5-17.6 17.4-18.5 19.0-24.4 19.2-24.7 

Difference 
between CES 
and QE results 

5.2 5.0 4.2 Not 
statistically 
significant  

Not 
statistically 
significant 

 

The relative value of different types of information is the same for both 

specifications of the agricultural profit function (compare tables 5.2 and 5.4 with 5.17 and 

5.18).  In both cases, the damage cost data are expected to have the highest value.  
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However, the value of information is approximately two times less for the CES 

specification of the production function.  The difference in the information values can be 

explained by the relatively low sensitivity of the decisions based on CES versus quadratic 

expansion of the corn profits (see the deterministic analysis in the previous chapter)10.   

Table 5.17.  Value of Information Given Alternative Specifications of the Agricultural Production 
Function, Million Dollars 

Information scenarios  
Pollution transport Abatement costs Damage costs  Ex post

Quadratic expansion 0.3 1.4 6.9 7.8
CES 0.1 0.4 4.2 4.5
 

Significant difference in the expected net benefits and information values given 

the alternative specification of the social surplus function emphasizes the importance of 

the knowledge of the true functional form for making policy decisions.   

Table 5.18.  Value of Information Given Alternative Specifications of the Agricultural Production 
Function, Percent From Ex Ante Expected Net Benefits 

Information scenarios  
Pollution transport Abatement cost Damage costs  Ex post

Quadratic expansion 2.0 11.2 55.7 63.7
CES 0.7 2.3 24.2 25.8

 

5.7. Alternative initial information about the pollution transport 
parameters 

In assessing the probability distribution for the imperfectly known parameter, the 

goal is to incorporate whatever experience and evidence the decision makers have into a 

coherent distribution that best expresses their true beliefs and foreknowledge [Lawrence 

1999].  Alternative distributions are possible given different initial knowledge or 

                                                 
10 The low value of abatement cost information can not be explained by the deterministic analysis, 

because the DNB for the social surplus based on CES profits are sensitive to the abatement cost parameter 
values.  Hence, further investigations are required to explain the result.  
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expertise of the decision makers.  The assumption made about the distribution of 

imperfectly known parameters influences the estimates of policy expected net benefits 

and VOI.  In the current research, the effects of the prior knowledge are illustrated for the 

example of the pollution transport coefficients.  Two cases are considered: less informed 

decision maker with uniform believes about the transport coefficients, and a more 

informed decision maker with normal distribution for the coefficients.   

The expected net benefits of regulation are lower for the less informed decision 

maker (see Table 5.19).  The expected net benefits is approximately three times worse for 

the ex ante, pollution transport and abatement cost scenario.  For the damage costs and ex 

post information scenarios, the difference in the expected net benefits is two-folds.  These 

results are the same for both policy instruments. 

Table 5.19.  Expected Net Benefits Given Uniform Distribution of the Pollution Transport 
Coefficient, Million Dollars 

 Information scenarios 
 Ex ante Pollution 

Transport 
Abatement 
cost 

Damage 
costs 

Ex post 

Input 
quantity 
control  

4.2 4.9 4.9 8.1 8.8

95% confidence 
interval 

 4.7-5.0 4.3-5.4 7.7-8.5 8.2-9.5 

Input taxes 4.5 5.1 4.9 7.9 8.8
95% confidence 
interval 

 5.0-5.3 4.3-5.4 7.5-8.3 8.2-9.5 

Difference 0.3 0.2 0 Not 
statistically 
significant

0

 
 

The prior knowledge of the decision maker about the transport parameters do not 

change the relative ranking of the policy instruments (compare tables 5.1 and 5.19): tax 

control performs better or at least no worse than the quantity control.  However, the 
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difference between policies is significantly smaller for the less informed decision maker.   

In the model, the increased uncertainty about the pollution transport parameters is 

associated with the higher value of perfect information about these parameters (see 

Tables 5.20 – 5.23).  Measured in absolute terms, the increase is approximately two-fold 

for both mechanisms.  In percentage terms, the increase is even higher.  For less informed 

decision maker, pollution transport information is expected to improve expected net 

benefits by 17% and 13% for quantity and tax mechanisms respectively, while for the 

more informed decision maker, this improvement is only 2% and 1.4%.  For the decision 

maker who is less-informed, collecting the pollution transport information is the second 

priority after the damage cost data irregardless of policy instrument.  

 

Table 5.20.  Expected Value of Information for Land and Fertilizer Quantity Controls, Million 
Dollars 

Information scenarios  
Pollution transport Abatement cost Damage costs Ex post 

Normal 0.3 1.4 6.9 7.8 
Uniform 0.7 0.7 3.9 4.6 
 

 

Table 5.21.  Expected Value of Information for the Quantity Control as Percent from Ex Ante 
Expected Net Benefits 

Information scenarios  
Pollution transport Abatement cost Damage costs Ex post 

Normal 2.0 11.2 55.7 63.7 
Uniform 16.7 16.7 92.9 109.5 

 

The value of abatement and damage costs information is smaller for less-informed 

decision-maker if measured in absolute terms (million dollars).  However, the value of 

the data increases if measured in percent from the ex ante expected net benefits.   
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Table 5.22.  Expected Value of Information for Tax Control, Million Dollars 

Information scenarios  
Pollution Transport Abatement costs Damage costs Ex post 

Normal 0.2 close to zero 5.5 6.3 
Uniform 0.6 close to zero 3.4 4.3 
 
Table 5.23.  Expected Value of Information for Tax Controls as Percent from the Ex Ante Expected 
Net Benefits 

Information scenarios  
Pollution Transport Abatement cost Damage cost Ex post 

Normal 1.4 close to zero 39.9 45.7 
Uniform 13.3 close to zero 75.6 95.6 
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Chapter 6.  Conclusions  
 

6.1. Overview 
The latest National Water Quality Inventory indicates that nonpoint source (NPS) 

pollution is the leading contributor to water quality impairments.  In particular, 

agricultural runoffs are responsible for 60 percent of the impaired river miles and half of 

the impaired lake acreage surveyed [US EPA 2003b].  One of the ways to solve the 

problem of NPS water pollution is to design and implement environmental policies that 

will induce agricultural producers to change their production practices and decrease 

environmental impacts [Ribaudo et. al. 1999].  An efficient environmental policy 

maximizes net economic benefits – the private net benefits of production (aggregate farm 

profits and benefits to owners of production inputs) minus the expected economic costs 

of pollution [Baumol and Oates 1988, Shortle and Horan 2001, Ribaudo et. al. 1999].   

The information necessary to design economically efficient pollution control 

policies is almost always incomplete [NRC 2000, Ribaudo et. al. 1999].  The economic 

benefits from agricultural production are only privately known and uncertain from the 

regulators’ perspectives (asymmetric information problem).  The diffuse nature of 

pollution makes it extremely difficult (and costly) to monitor the runoffs and estimate the 

marginal environmental damages for individual polluters.  In turn, the relationship 

between production practices and environmental damages are complex and poorly 

understood.  Estimation of the damages requires knowledge of hydrologic processes 

driving the pollution fate and transport, biophysical relationships between pollution 

concentration and the states of water ecosystems, and economic factors affecting the 
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economic demands for water system services [Ribaudo et. al. 1999].  The information 

about these relationships is usually unavailable.  The uncertainties about economic 

benefits and environmental damages complicate designing an efficient environmental 

policy.   

The determinants of the policy efficiency under uncertainty have been a subject of 

scientific research for approximately 30 years.  Among the important factors, there are 

the choice of the indicator for monitoring polluters’ compliances with the policy (e.g., 

polluting input use versus ambient concentrations), the policy mechanism used, the 

spatial allocation of pollution reductions, and the characteristics of uncertainty that the 

decision makers are facing.  However, most of the theoretical studies focused on policy 

design under uncertainty are based on restrictive models.  The assumptions about 

functional relationships and uncertainty characteristics made in analytical studies often 

make their conclusions too narrow to apply in a real-life situation.  Several studies have 

investigated relative efficiency of policy instruments based on empirical modes (e.g., 

Carpentier et. al. 1998, Vatn et. al. 199711).   However, many of them assume 

deterministic situations with no uncertainty (e.g., Hopkins et. al. 1996, Weinberg and 

King 1996), or focus on one type of uncertainty, e.g., asymmetric information (e.g., 

Randhir and Lee 1997, Huang et. al.  1996).   

In addition to selecting the policy designs, the decision makers can choose to 

invest into information collection to improve the performance of a selected policy.  Given 

limited budgets and possibly high costs of data gathering, the priority directions for data 

collection should be identified.  The choice of the priorities can be based on the expected 

increase in policy efficiency due to data collection, i.e. the value of information. 
                                                 
11 For a comprehensive review see [Horan and Shortle 2001].   
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This study is focused on design of environmental policy to reduce nitrogen 

pollution from corn production in SRB and to estimate the value of information for the 

policies.  First, the relative ranking of input price and quantity controls is examined.  The 

regulations targets nitrogen fertilizer and land use, since these agricultural inputs directly 

affect the pollution runoffs and are relatively easy to monitor and control.  Price control 

refers to taxes or subsidies, and quantity controls refer to aggregate trading quotas in each 

watershed.  The second research question is the analysis of the value of alternative types 

of information for the alternative policy mechanisms.  Three aggregate types of 

uncertainty are modeled: abatement cost, pollution fate and transport, and damage costs 

uncertainties.  Accordingly, the efficiency of alternative policy instruments is estimated 

given five information scenarios: the baseline information (ex ante), or perfect 

information about the production profits/abatement costs; pollution transport, damage 

costs, or all the uncertain parameters.  The value of information is the difference in the 

expected net benefits for the scenarios with improved and ex ante information.    

The functional forms for environmental and economical processes affecting 

nitrogen pollution in SRB are not perfectly known.  In addition, for each possible 

functional form, regulators can make different assumptions about possible parameter 

values.  The policy efficiency and value of information results are conditional on the 

assumptions about functional form and parameters.  Hence, the third research question is 

the study of the possible effects of these assumptions on the efficiency of input price and 

quantity controls in the SRB.  Alternative (commonly used) functional forms of 

agricultural profits are analyzed; and different assumptions about the true values of 

transport coefficients and their probabilities are considered.   
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Finally, the efficiencies of the policy designs with smaller / higher information 

requirements are compared.  Uniform policies (which impose uniform taxes or aggregate 

quotas in every SRB watershed) are compared with differentiated controls (which set 

unique requirements for each watershed based on estimated abatement costs and 

damages).  Apart from this, the efficiencies of the policies for the entire region, or for 

one, two, or three watersheds with the highest nitrogen loads are compared.   

Eight SRB watersheds are modeled.   The benefits from corn production are 

simulated as a sum of corn producers’ profits and economic surplus of the land suppliers.  

The model also simulates nitrogen runoff to the mouth of each watershed and pollution 

transport to the Chesapeake Bay.  Environmental damage costs are modeled as an 

increasing convex function of the total loadings from the region to the Bay.  To represent 

the uncertainties facing the decision maker, parameters in the functions representing 

economic benefits, pollution transport and damage costs, are modeled as random 

variables.   

6.2. Research Results and Policy Implications 
The following conclusions can be drawn from the analysis.  First, in the region, 

land and fertilizer taxes perform better, or at least as good as, the aggregate trading 

quotas.  However, the difference in the efficiency of the policy instruments depends on 

the information scenario considered: the less information is available, the more vital it is 

for the decision maker to select the policy instrument optimally.  For example, for 

minimal information (ex ante information scenario), the difference between the 

instruments’ efficiencies is $1.5 million, while for the damage cost information scenario, 

the expected net benefits for the instruments are almost the same.   
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Collecting damage costs information has the highest priority for efficient policy 

design12.  Improvement of the damage cost information results in 56% and 40% increase 

in efficiencies of the quantity and price controls respectively.  For abatement cost and 

pollution transport information, the increase in policy efficiency is much smaller.     

The value of all information types is higher for the quantity control than for the 

price regulation.  The difference in the information value between price and quantity 

control ranges from $0.1 to $1.5 million for alternative information scenarios.   

Given that the costs of information about individual watersheds are high, it can be 

justified to limit the regulation to one, two or three watersheds with the highest loadings.  

Regulating one watershed with the highest loading accounts for 40% and managing three 

the most polluting watersheds attributes for 80% of the expected net benefits form the 

pollution control in the entire region.  Regulating five other watersheds increases policy 

efficiency by only 20%.  Given high information costs, this contribution can be too low 

to justify the regulation of these low-polluting watersheds.   

The degree of policy spatial differentiation does not significantly alter the relative 

policy efficiency.  One of the reasons is the simplifications made in the model, 

particularly, the reduction of the heterogeneity among the watersheds in comparison with 

the real world.   

The following factors influence efficiency of a policy under uncertainty:  

1) Information structure.  In line with Weitzman’s result [1974], with the 

abatement cost information, policy mechanisms perform the same.  For damage costs 

information scenario, efficiency of the input-based price and quantity policies is also 

similar.  However, given ex ante or pollution transport information, the difference in the 
                                                 
12 Note, that the costs of information gathering are not considered in the research 
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price and quantity instrument performances are high with the former instrument 

outperforming the later one. 

2) Policy spatial differentiation and the degree of abatement and damage 

costs heterogeneity among watersheds.  Efficiency of both policy instruments is lower for 

the uniform policy than for the differentiated one.  However, the difference is small.  

Given possibly high costs of data collection, designing a unique policy for each 

watershed is not justified.  However, this conclusion can be biased due to low degree of 

heterogeneity captured in the model.  For example, the difference between the 

efficiencies of uniform and differentiated policies increases when watersheds’ 

environmental impacts become potentially more different (e.g., when the transport 

coefficients are distributed uniformly with a larger variance allowed versus normal 

distributions assumed initially)  

3) Functional relationships assumed for economic and biophysical processes 

in the region.  For example, for the land and fertilizer quantity control, change in the 

assumption about the corn profit functional form causes $5.2 million difference in the 

estimate of ex ante policy efficiency.    

  The following determinants of the value of information are identified: 

1) The policy mechanism selected.  The value of information is higher for the 

input quantity control than for the input tax regulation.   

2) Sensitivity of the policy decisions to changes in parameter values, and the 

amount of uncertainty about a parameter (measured by variance or entropy).  For 

example, the value of the damage cost elasticity significantly affects the level of taxes 

and aggregate input use quotas chosen.  The entropy (a measure of uncertainty) is also 
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high for the parameter.  As a result, the value of the damage cost information (which 

includes data about the damage cost elasticity) has the highest value.   

3) Prior knowledge of decision makers about the possible values of the 

uncertain parameters and their probabilities.  The value of the pollution transport data for 

the tax policy is three times higher given the uniform probabilities of pollution transport 

coefficient values versus normal distribution. 

4) The assumption about functional relationships in the system.  The value of 

the abatement cost information for the land and fertilizer quantity control is 3.5 times 

higher when the quadratic approximation is used for agricultural profits instead of CES 

function.   

 

6.3. Limitations and perspective for future studies 
 

Current research is based on the model with corn production as the only 

agricultural sector (partial equilibrium analysis).  This simplification restricts the 

flexibility of the farmers’ responses to the regulation modeled.  It does not allow 

simulation of the reallocation of agricultural lands between different agricultural practices 

as a result of the environmental control.  This partial analysis influences the conclusions 

about policy expected net benefits and information values.  For example, simulation of 

dairy and corn production simultaneously can increase the economic costs associated 

with environmental policy (i.e. decrease policy efficiency).  Manure application is a main 

source of nitrogen in the corn production.  Taxes or quantity limits on nitrogen fertilizer 
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application would affect both corn and dairy profits, increasing the economic costs of 

environmental policy.  

I do not account for point and urban source loadings.  This simplification does not 

allow simulation of the redistribution of the pollution reductions among alternative 

source types.  Such redistribution of load reductions decreases the environmental policy 

abatement costs, which is not captured in the model.      

I also ignore the distortions of environmental policy results associated with other 

existing agricultural regulations (e.g., farm income policy).  As noted by Shortle and 

Laughland [1994], Lewis [1996], and Peterson and Boisvert [2001], the implementation 

of environmental measures that increase production costs is not politically feasible unless 

accompanied by compensating adjustments in farm income support policies.  

Compensating the farms’ losses due to environmental regulation often worsen policy 

environmental outcomes.    

I also ignore the dynamic aspects of the production, pollution, and regulation 

process, such as the improvement in policy performance with time, modeling 

innovations, or analyzing the effect of the time of information collection on its value.  As 

shown by Nordhause and Popp [1997], shift in the time of information acquisition can 

significantly alter the information value.  For example, the information can have zero 

value if it reveals after the decision is made.   

Finally, I do not model explicitly the information collection process; instead I 

compare the cases with ex ante or complete information about each of the imperfectly 

known parameter.  However, it might be not optimal or feasible to collect complete 

information about any parameter.  For example, Dinar and Xepapadeas [2002] consider a 
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dynamic model that implies that perfect information can be achieved just with infinite 

investments.  They show that steady state amount of information and investments in 

information collection depend on politically acceptable upper bound on environmental 

taxes. The lower the upper bound for the taxes, the larger knowledge accumulation / 

investments should be made.  Lawrence [1999] presents a theoretical framework of 

analyzing optimal amount of information.  He suggests that the data should be collected 

till the point where marginal benefits of information equal marginal costs.  Note that in 

this analysis I leave out the whole issue of information collection costs.  

The limitations described above are due to the following reasons: 1) the objective 

to make the research results general and relatively easy to interpret; 2) the lack of specific 

data; 3) computational difficulties that arise with complex nonlinear models.   

There is a tradeoff between how realistic the model is and how simple it is and 

easy to interpret.  Levins [1966] and Constanza et. al. [1990] described the fundamental 

trade-offs in modeling between realism, precision, and generality.  No single model can 

maximize all three goals, and the choice of which objectives to pursue depends on 

fundamental purposes of the modeling study.  My approach favors generality, and in 

striving for generality, the model gives up some realism and precision.  Relationships are 

simplified and resolution is reduced.   

Increased model complexity typically implies increased data requirements, which 

can lead to a feedback loop of increased complexity, requiring increasing data, etc 

[Bobba et. al. 2000].  The lack of the available data currently prevents from the 

construction of a more complex and realistic model.  There is no study that would report 

the true form of the agricultural production functions in each of the sub-watersheds, or 
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give the values of production function parameters, such as elasticities of input demand, 

supply or substitution.  The same is true for the damage cost function.  There is no study 

that would estimate in monetary terms the environmental effect of nitrogen pollution 

transported from SRB to the Chesapeake Bay, or report the functional form for the 

environmental damages. 

Finally, the computation time for this model is large, and further complication of 

the model would require unreasonably long time to get the results with the available 

computation resources.  

I consider this research as a useful starting point in empirical analysis of the link 

between information collection and environmental policy design, and much more 

researches on the topic should be done in future. 

 



 

 114

References 
 
Abebe K., Olson K., and D. Dahl.  1989.  The Demand For Fertilizer. Staff paper p89-44. 
November, 1989.  University of Minnesota.   
http://agecon.lib.umn.edu/cgi-bin/pdf_view.pl?paperid=3535&ftype=.pdf 
 
Abler 2002.  Personal Communications 
 
Abler D.G. and J.S. Shortle.  1995. Technology as an Agricultural Pollution Control 
Policy, American Journal of Agricultural Economics, 77, 20-32. 
 
Abler D.G., Shortle J.S. and J. Carmichael.  2001.  Climate Change, Agriculture, and 
Water Quality in the U.S. Chesapeake Bay Region.  
http://www.usgcrp.gov/usgcrp/nacc/agriculture/abler-2000.pdf  
 
Abrahams N. and J.S. Shortle. 1997.  The Value of Information and the Design of 
Environmental Policies for Agriculture.  Selected Papers Presented at American 
Agricultural Economics Association annual meeting, Canada, July. 
 
Adams R.M. and T.D. Crocker. 1983.  Economically Relevant Response Estimation and 
the Value of Information: Acid Deposition.  In Crocker T.D. (ed.) 1983. Economic 
Perspectives on Acid Deposition Control. Acid Precipitation Series, Vol. 8.  ButterWorth 
Publishers, Boston.   
 
Adar Z. and J. M. Griffin. 1976. Uncertainty And The Choice Of Pollution Control 
Instruments.  Journal of Environmental Economics and Management, October, 178-188.   
 
Alliance for the Chesapeake Bay. 2003. The Susquehanna and the Chesapeake Bay. The 
Susquehanna: Lifeline To The Bay.   
http://www.acb-online.org/pubs/projects/deliverables-153-3-2003.pdf (last accessed 
September 5, 2003) 
 
Aptech. 2003.  GAUSS: Advanced Mathematical and Statistical System.   
http://www.aptech.com/ (last accessed September 19, 2003) 
 
Arrow and Hurwicz 1972. An Optimal Criterion for Decision-Making Under Ignorance. 
In Carter C.F. and J.L.Ford (eds) Uncertainty and Expectations in Economics: Essays in 
Honor of G. Shackle. Oxford, Basil Blackwell.  Referenced by Woodward R.T. and R.C. 
Bishop 1997. How to Decide When Experts Disagree: Uncertainty-Based Choice Rules 
in Environmental Policy.  Land Economics, November, 73(4): 492-507 
 
Babckock B.A., Lakshminarayan P.G., Wu. J. and D. Zilberman. 1997.  Targeting Tools 
For The Purchase Of Environmental Amenities. Land Economics, 73 (3): 325 – 339 
 



 

 115

Baumol W. J. and W. E. Oates.  1988.  The Theory of Environmental Policy.  Cambridge 
University Press, Cambridge. 
 
Belval D.L. and L. A. Sprague, 1999. Monitoring Nutrients in the Major Rivers Draining 
to Chesapeake Bay. Water-Resources Investigations Report 99-4238, USGS. 
http://va.water.usgs.gov/online_pubs/WRIR/99-4238/99-4238.html (Last accessed 
September 2003) 

Binswanger H.P.  1974.  The Measurement of Technical Change Biases with Many 
Factors of Production.  American Economic Review, 64, 964-76 
 
Bobba A.G., Singh, V.P. and L. Bengtsson.  2000.  Application Of Environmental 
Models To Different Hydrological Systems.  Ecological Modeling, 125 (2000), 15-49 
 
Bockstael N., Constanza R., Stand I., Boynton W., Bell K and L. Wainger.  1995.  
Ecological Economic Modeling and Valuation of Ecosystems.  Ecological Economics 14, 
143 – 159 
 
Bockstael N., McConnell K.E. and I. Stand.  1988.  Benefits From Improvement In 
Chesapeake Bay Water Quality.  EPA Contract 8111043-01, USEPA 
 
Bosch D. J., Batie S.S. and L.C. Carpentier. 1994. The Value Of Information For 
Targeting Water Quality Protection Programs Within Watersheds.  In: Economic Issues 
Associated With Nutrient Management Policy:  Proceedings of a Regional Workshop.  
Southern Rural Development Center and Farm Foundation. 
 
Boughton D.A., Smith E.R. and R.V. O’Neill.  1999. Regional Vulnerability: A 
Conceptual Framework.  Ecosystem Health, Vol. 5, No. 4 (December), 312 – 322 
 
Boyd J.  1998.  The Benefits of Improved Environmental Accounting: An Economic 
Framework to Identify Priorities.  Discussion Paper 98-49.  Resources for future. 
http://www.rff.org/Documents/RFF-DP-98-49.pdf 
 
Braden J.B. and K. Segerson. 1993.  Information Problem in the Design of Nonpoint 
Source Pollution Policy.  In: Russell C.S. and J.F. Shogren (eds).  Theory, Modeling, and 
Experience in the Management of Nonpoint Source Pollution.  Kluwer Academic 
Publishers, Boston, MA.   
 
Cabe, R., and J. Herriges. 1992. The Regulation of Nonpoint-Source Pollution Under 
Imperfect and Asymmetric Information, Journal of Environmental Economics and 
Management 22:34-146 
 
Camacho R. 1991. Financial Cost-Effectiveness of Point and Nonpoint Source Nutrient 
Reduction Technologies in the Chesapeake Bay Basin. ICPRB Report, 91-8. 
 
Carmichael J. and B. Evans. 2000. A Reduced Form Model of Non-Point Pollution 
Loading for Regional Scale Analysis. Working paper, The Pennsylvania State University. 



 

 116

 
Carson R.T. and R.C. Mitchell. 1993. The Value Of Clean Water: The Public’s 
Willingness To Pay For Boatable, Fishable, And Swimmable Water Quality.  Water 
Resources Research, 29(7): 245-254  
 
Carpentier C.L., Bosch D.J. and S.S. Batie. 1998.  Using Spatial Information to Reduce 
Costs of Controlling Agricultural Nonpoint Source Pollution.  Agricultural and Resource 
Economics Review, April.  
 
Chavas J.-P. 1991.  Information Issue in the Coordination of Agricultural and Resource 
Policies.  In Just R.E. and N. Bockstael (eds). Commodity and Resource Policies in 
Agricultural Systems. Springer-Verlag, New York 
 
Chesapeake Bay Program. 2003.  The facts about the Chesapeake. 
http://www.chesapeakebay.net/about.htm (last accessed September 19, 2003) 
 
Christensen T. and H. Rygnestad.  2000.  Environmental Cross Compliance: Topics for 
Future Research.  Working paper.  Danish Institute of Agricultural and Fisheries 
Economics. http://www.sjfi.dk/wp/wp200001.pdf  
 
Cochard F., Willinger M. and A. Xepapadeas. 2002. Efficiency of Nonpoint Source 
Pollution Instruments in the Presence of Endogenous Externality Among Polluters: An 
Experimental Approach http://weber.ucsd.edu/~carsonvs/papers/725.doc (last accessed 
September 19, 2003) 
 
Collier I.L. 2003.  Elasticity of Substitution (Lecture notes). Institut für öffentliche 
Finanzen und Sozialpolitik (Germany) http://www.wiwiss.fu-
berlin.de/w3/w3collie/Labor01/ElasticityOfSubstitution.doc (last accessed September 10, 
2003) 
 
Constanza R., Sklar F.H., and M.L. White. 1990. Modeling Coastal Landscape 
Dynamics.  BioScience, Vol. 40, No. 2, February 
 
Cousino B.  2002. Modeling Of Nonpoint Nutrient Sources In Mill Creek Watershed.  
Cass Presentation.  University of Michigan http://www-
personal.umich.edu/~acotel/Webpages/Classwebpages/11 (last accessed Feb. 2002) 

Dakins, M.E., Toll, J.E., Small, M.J., and Brand, K.P. 1996. Risk-Based Environmental 
Remediation: Bayesian Monte Carlo Analysis And The Expected Value Of Sample 
Information. Risk Analysis, 16, 67-80 

Damania R. 2001. Environmental Control with Corrupt Bureaucrats.  Discussion Paper 
0116.  Center for International Economic Study, Adelaide University, Australia. 
http://www.adelaide.edu.au/cies/0116.pdf 
 



 

 117

Denbaly M. 1991.  Elasticities of fertilizer demands for corn in the short and the long 
run: a cointegrated and error-correcting system.  US DA, Rockville, MD: ERS-NASS 
 
Deutsch C., Hall M.G., Bradford D.F. and K.Keller. 2002.  Detecting A Potential 
Collapse Of The North Atlantic Thermocline Circulation: Implication For The Design Of 
An Ocean Observation System.  Paper presented at the EMF Summer Workshop "Climate 
Change Impacts and Integrated Assessment VIII" Snowmass, Colorado,  
http://www.geosc.psu.edu/~kkeller/keller_etal_snowmass_02.pdf (last accessed 
September 19, 2003)    
 
Dillaha T. A. 2002.  Nonpoint Source Pollution Modeling.  Course materials.  Virginia 
Tech. 
https://courseware.vt.edu/users/dillaha/bse4324/NPS%20Modeling%20Lecture%20-
%2010pt.pdf (last accessed September 19, 2003) 
 
Dinar A. and A. Xepapadeas. 2002. Regulating Water Quantity And Quality In Irrigated 
Agriculture: Learning By Investing Under Asymmetric Information.  Environmental 
Modeling and Assessment, 7: 17-27 
 
Dosi C. and M. Moretto.  1994.  Nonpoint Source Externalities and Polluter’s Site 
Quality Standards Under Incomplete Information.  In: Dosi C. and T. Tomasi (eds.). 
1994.  Nonpoint Source Pollution Regulation: Issues and Analysis.  Kluwer Academic 
Publishers, Boston, MA. 
 
Dosi C. and M. Moretto.  1993.  Nonpoint Source Pollution, Information Asymmetry and 
the Choice of Time Profile for Environmental Fees.  In:  Russell C.S. and J.F. Shogren 
(eds).  Theory, Modeling, and Experience in the Management of Nonpoint Source 
Pollution.  Kluwer Academic Publishers, Boston, MA. 
 
Economic Research Service, US DA. 2003. Costs and Returns Survey.   
http://www.ers.usda.gov/briefing/farmincome/costsandreturns.htm (last accessed October 
13, 2003) 
 
Environmental valuation and cost-benefit web-site (EVCBW).  2003.  Environmental 
economics glossary.  http://www.damagevaluation.com/glossary.htm  
 
European Environmental Agency. 2003. An Indicator–Based Approach To Assessing The 
Environmental Performance Of European Marine Fisheries And Aquaculture.  Technical 
Report 87.  
http://repository.eea.eu.int/reports/technical_report/87/full_report/en/html/content (last 
accessed September 19, 2003) 
 
Evans 2002 – 2003.  Personal Communications 
 
Evans B.M., Lehning D.W., Corradini K.J., Petersen G.W., Nizeyimana E, Hamlett J.M., 
Robillard P.D. and R.L. Day.  2002.  A Comprehensive Gis-Based Modeling Approach 



 

 118

For Predicting Nutrient Loads In Watersheds.  Journal of Spatial Hydrology, Vol.2 No.2, 
http://www.avgwlf.psu.edu/AvGWLFOverview.pdf  
 
Finkel A.M. and J.S. Evans.  1987.  Evaluation the Benefits of Uncertainty Reduction in 
Environmental Health Risk Management.  JAPCA 37: 1164-1171 
 
Fishelson G.  1976.  Emission Control Policies Under Uncertainty.  Journal of 
Environmental Economics and Management.  October, 189-197. 
 
Flemming R.A. and R.M. Adams. 1997. The Importance of Site-Specific Information in 
the Design of Policies to Control Pollution.  Journal of Environmental Economics and 
Management, 33, 347-358 
 
Folmer H., Gabel H.L., and H. Opschoor.  1995.  Principals of Environmental and 
Resource Economics.  Edward Elgar, Aldershot, UK  
 
Fonseca G.L. and L. Ussher (eds.). 2003. Neoclassical Theories of Production.  The 
History of Economic Thought Website. 
http://cepa.newschool.edu/~het/essays/product/product.htm  
 
Freeman A.M. III. 1982. Air And Water Pollution Control: A Benefit-Cost Assessment.  
NY: John Winley and Sons.   
 
Gunjal K.R., Roberts R.K., and E.O. Heady. 1980. Fertilizer Demand Functions for Five 
Major Crops in the United States. Southern Journal of Agricultural Economics, 
December. 
 
Hagem C.  1998.  Climate Policy, Asymmetric Information And Firm Survival.  Working 
paper. Center for International Climate and Environmental Research, Oslo.  
http://www.accc.gv.at/pdf/wp1998-10.pdf  
 
Haith D.A. and L.L. Shoemaker. 1987.  Generalized Watershed Loading Functions For 
Stream Flow Nutrients.  Water Resources Bulletin, 107:121-137. 
 
Hanley N., Shogren J.F. and B. White.  1997. Environmental Economics In Theory and 
Practice. Oxford University Press, NY.  
 
Hansen L.G. 2001.  Nitrogen Fertilizer demand by Danish Crop Farms – Regulatory 
Implications of Farm Heterogeneity.  SOM Publication No. 44, AKF Forlaget.   
 
Heady E.O. and M.H. Yeh. 1959.  National and Regional Demand Functions for 
Fertilizer.  Journal of Farm Economics, Vol. 41 
 
Helfand G.E. and B.W. House. 1995.  Regulating Nonpoint Source Pollution Under 
Heterogeneous Conditions.  American Journal of Agricultural Economics 77(4): 1024 – 
1032 



 

 119

 
Hertel, T.W., Stiegert K., and H. Vroomen.  1996. Nitrogen-Land Substitution in Corn 
Production: A Reconciliation of Aggregate and Firm-Level Evidence.  American Journal 
of Agricultural Economics, 78 
 
Hession W.C., Storm D.E., Haan D.E., Reckhow K.H., and M.D. Smolen.  1996.  Risk 
Analysis of Total Maximum Daily Loads in an Uncertain Environment Using 
EUTROMOD.  Journal of Lake and Reservoir Management, 12 (3): 331-347 
 
Hicks 1932.  Marginal Productivity and the Principle of Variation. Economica 
Quoted by Fonseca G.L. and L. Ussher (eds.). 2003. Neoclassical Theories of Production.  
The History of Economic Thought Website. 
http://cepa.newschool.edu/~het/essays/product/product.htm (Last accessed September 19, 
2003) 
 
Hoff A.  2002.  The Translog Approximation Of The Constant Elasticity Of Substitution 
Production Function With More Than Two Input Variables.  Danish Research Institute 
For Food Economics.  http://www.sjfi.dk/Publikationer/wp/2002-wp/WP14-02.pdf (Last 
accessed September 19, 2003) 
 
Hopkins J., Schnitkey G. and L. Tweeten. 1996.  Impacts of Nitrogen Control Policies on 
Crop and Livestock Farms at Two Ohio Farm Sites.  Review of Agricultural Economics, 
18, 311 - 324  
 
Horan R.D., Abler D.G., Shortle J.S. and J. Carmichael. 2002a. Cost-Effective Point-
Nonpoint Trading: An Application to the Susquehanna River Basin, Journal of the 
American Water Resources Association, 38(2):1-12, April  
 
Horan R.D., Ribaudo, M., and D.G. Abler.  2001.  Voluntary Indirect Approaches for 
Reducing Externalities and Satisfying Multiple Objectives.  In: Shortle J.S. and D.G. 
Abler (eds.).  Environmental Policies for Agricultural Pollution Control.  CABI 
Publishing, New York 
 
Horan R.D. and J.S. Shortle. 2001.  Environmental Instruments for Agriculture.  In: 
Shortle J.S. and D.G. Abler (eds.).  Environmental Policies for Agricultural Pollution 
Control.  CABI Publishing, NY 
 
Horan R.D., Shortle J.S. and D.G. Abler. 2002b. Nutrient Point-Nonpoint Trading in the 
Susquehanna River Basin. Water Resources Research, 38(5), 1-13 
 
Horan R.D. 2002c. Personal Communication 
 
Hosking R.J., Joe S., Joyce D.C. and J.C. Turner.  1996. First Steps in Numerical 
Analysis.  Second Edition.  Arnold, London 
 



 

 120

Howitt R.E, Ward K.B. and S. M. Msangi.  1999.  CALVIN Report: Statewide Water 
Model Schematics (August, 1999).  UC Davis.  
http://cee.engr.ucdavis.edu/faculty/lund/CALVIN/Report1/Appendices/AppendixA.pdf 
(Last accessed September 19, 2003) 
 
Huang W.-Y., Shank D. and I.T. Hewitt.  1996.  On-farm Costs of Reducing Residual 
Nitrogen on Cropland Vulnerable to Nitrate Leaching.  Review of Agricultural 
Economics, 12, 325 – 339.  
 
Huffman W.H. and R.E. Just.  2000.  Setting Efficient Incentives for Agricultural 
Research: Lessons from Principal-Agent Theory.  American Journal of Agricultural 
Economics, 82(4), November, 828-841 
 
Isik M. 2002. Resource Management Under Production And Output Price Uncertainty: 
Implications For Environmental Policy.  American Journal of Agricultural Economics, 
84(3), 557-571 
 
Johansson R.C.  2002.  Watershed Nutrient Trading Under Asymmetric Information.  
Agricultural and Resource Economics Review, 31/2, 221-232.  
 
Just R.E., Hueth D.L. and A. Schmitz.  1982.  Applied Welfare Economics And Public 
Policy.  Englewood Cliffs, N.J.: Prentice-Hall    
 
Kakita N. 2001.  Transboundary Pollution And Non-Cooperative Tariffs.  
http://www.econs.ecel.uwa.edu.au/economics/econs/ecom_conf/kakita.pdf (last accessed 
September 19, 2003) 
 
Kao J.-J. and H.J. Hong.  1996.  BPS Model Parameter Uncertainty Analysis for an Off-
stream Reservoir.  Water Resources Bulletin, Vol. 32, No. 5, October 
 
Karr J.R. and E.W. Chu 1999.  Restoring Life in Running Waters: Better Biological 
Monitoring.  Island Press, Washington, DC.   
 
Kawagoe, T., K. Otsuka, and Y. Hayami, Induced Bias of Technical Change in 
Agriculture: The United States and Japan, 1880-1980, Journal of Political Economy, 94, 
523-544, 1985. 
 
Kirkley J.E., Bockstael N., McConnell K.E. and I.E. Strand.  1999.  The Economic Value 
of Saltwater Angling in Virginia.  Virginia Marine Resource Report No. 99-2, VSG-99-
02 
 
Kostald C.D. 1986.  Empirical Properties of Economic Incentives and Command-and-
Control Regulations for Air Pollution Control.  Land Economics, Vol. 62, No3 (August), 
250 - 268 
 



 

 121

Lambert D.K. 1990. Risk Considerations in the Reduction of Nitrogen Fertilizer Use in 
Agricultural Production.  Western Journal of Agricultural Economics, December 
 
Lane D.M. 2001.  Virtual Lab in Statistics.  
http://davidmlane.com/hyperstat/confidence_intervals.html (last accessed May 2003) 

Lawrence, D. B. 1999. The Economic Value of Information. Springer, New York.  

Lewis T. R. 1996.  Protecting The Environment When Costs And Benefits Are Privately 
Known.  RAND Journal of economics, Vol. 27, No. 4 (Winter), 819 – 847 
 
Malcomson J.M.  1978.  Prices vs. Quantities: a Critical Note on the Use of 
Approximation.  Review Of Economic Studies, 45(1), 203–207 
 
Mas-Colell A., Winston M.D. and J. Green. 1995.  Microeconomic Theory. Oxford 
University Press, New York  
 
Malik A.S. 1993.  Self-Reporting And The Design Of Policies For Regulating Stochastic 
Pollution.  Journal of Environmental Economics and Management, 24, p. 241 – 257 
 
Malik A.S., Larson B.A. and M.O. Ribaudo. 1994. Economic Incentives for Agricultural 
Nonpoint Source Pollution Control, Water Resources Bulletin, 30, 471-480. 
 
Maryland Department of Natural Resources. 1999.  State Of the Streams. Chesapeake 
Bay and Watersheds Program. http://www.dnr.state.md.us/streams/pubs/ea99-6_parts/ea-
99-6_chap8.pdf (last accessed June 16, 2003)  
 
Mensbrugghe D.  2001. Linkage (version 5): Technical Reference.  Economic Policy and 
Prospects Group (EPPG), World Bank. 
http://www.worldbank.org/prospects/pubs/TechRef.pdf (last accessed September 16, 
2003) 
 
Moxey A. and B. White. 1994.  Efficient Compliance With Agricultural Nitrate Pollution 
Standards.  Journal of Agricultural Economics.  45(1), 27 – 37 
 
Musser W., Shortle J., Kreahling K., Roach, B., Huang W., Beegle D. and R. Fox.  1995.  
An Economic Analysis Of The Pre-Sideress Nitrogen Test For Pennsylvania Corn 
Production.  Review of Agricultural Economics, 17(1), 25-35 (January) 
 
Naevdal E. 2001. Optimal Regulation of Eutrophic lakes, Fjords, and Rivers in the 
Presence of Threshold Effects.  American Journal of Agricultural Economics, 83(4), 
November, 972-984 
 
Natural Resources Defense Council. 1998. Clean Water & Oceans: Water Pollution, In 
Depth. http://www.nrdc.org/water/pollution/factor/aafinx.asp (last accessed September 5, 
2003) 
 



 

 122

National Research Council (NRC).  2000.  Assessing the TMDL Approach to Water 
Quality Management.  National Academy Press, Washington, DC. 

Navrud S. and J. Pruckner. 1997.  Environmental Valuation – To Use or Not to Use? A 
Comparative Study of the United States and Europe.  Environmental and Resource 
Economics, 10: 1–26 
 
Nawar A.-H. 1998.  Internalization of Externalities: Does Institutional Configuration 
Matter? http://www.sinc.sunysb.edu/stu/anawar/a.pdf (last accessed September 15, 2003) 
 
Nichols A.L. 1984.  Targeting Economic Incentives for Environmental Protection. 
Cambridge 
 
Nordhaus W.D. and D. Popp. 1997.  What is The Value of Scientific Knowledge? An 
Application to Global Warming Using PRICE Model.  The Energy Journal, Vol. 18, 
No.1, 1-45 
 
Oates W. 1995. Green Taxes: Can We Protect the Environment and Improve the Tax 
System at the Same Time? Southern Economic Journal, 6(14). 

Ohio EPA.  TMDL for the Upper Little Miami River.   
http://www.epa.state.oh.us/dsw/tmdl/ULMR_finalreport.pdf (last accessed February 15, 
2003) 
 
PA DEP 2000. Pennsylvania’s Chesapeake Bay Nutrient reduction strategy. Year 2000 
update. 
http://www.dep.state.pa.us/hosting/pawatersheds/chesapeakebay/resources/ref/nutrient/nu
trient.htm  (last accessed September 5, 2003) 
 
PA Agricultural Statistical Service. 2002 – 1997.  Annual Summary.  
http://www.nass.usda.gov/pa/ (last accessed November 11, 2003) 
 
Parson S.C., Hamlett, J.M., Robillard P.D. and M.A. Foster.  1998. Determining the 
Decision-Making Risk From AGNPS Simulations.  Transactions of the ASAE, Vol. 
41(6): 1679 – 1688 
 
Pautsch G.R., Babcock B.A. and F. J. Breidt. 1999. Optimal Information Acquisition 
under a Geostatistical Model.  Working Paper 99-WP 217. Center for Agricultural and 
Rural Development, Iowa State University.  
http://www.card.iastate.edu/publications/DBS/PDFFiles/99wp217.pdf (last accessed 
September 10, 2003) 
 
Pearce D., Hett T., Ozdemiroglu E. and A. Howarth.  1999.  Review of Technical 
Guidance on Environmental Appraisal: A Report by Economics for the Environment 
Consultancy.  http://www.defra.gov.uk/environment/economics/rtgea/5.htm (last 
accessed September 10, 2003) 
 



 

 123

Peck S.C. and T.J. Teisberg. 1995. International CO2 emissions control. An analysis 
Using CETA. Energy Policy 23(4/5): 297. 
 
Peck S.C. and T. J. Tiesberg. 1993.  The Importance of Nonlinearities in Global Warming 
Damage Costs.  In: Assessing Surprises and Nonlinearities in Greenhouse Warming.  
Proceeding of an Interdisciplinary Workshop/ Darmstadter J.  and M.A.  Toman (eds.).  
Resources for Future.   

Pennsylvania Agricultural Statistical Service. 2003.  Annual Reports.  
http://www.nass.usda.gov/pa/ (last accessed September 19, 2003) 
 
Pennsylvania State University (PSU). 2001. The Penn State Farm Management 
Handbook.  Agricultural Economics and Rural Sociology Department, Pennsylvania 
State University 
 
Peterson J.M. and R.N. Boisvert. 2001. Control of Nonpoint Source Pollution Through 
Voluntary Incentive-Based Policies: An Application to Nitrate Contamination in New 
York.  Agricultural and Resource Economics Review, 30/2, October, 127-138 

Pfleger K. 2001.  EPA Estimates Costs Of Clean Water TMDL Program.  Pulp & 
Paperworkers' Resource Council. 
http://www.pprcsouth.org/News/2001/August2001/News1.htm 

Poe G. 1998.  Valuation Of Groundwater Quality Using A Contingent Valuation-Damage 
Function Approach.  Water Resources Journal, 34, 3627 – 3633.  Referenced by 
Schlapfer F. and J.D. Erickson.  2001.  A Biotic Control Perspective on Nitrate 
Contamination of Groundwater from Agricultural Production.  Agricultural and Resource 
Economics Review, 30/2, (October), 113 – 126 
 
Prang T. 1998.  Unsupervised Data Mining in Nominally-Supported Databases. Los 
Alamos National Laboratory.  
 http://www-lehre.informatik.uni-osnabrueck.de/~ftprang/papers/tproject/node9.html  
(Last accessed Feb. 25, 2003) 
 
Proost S.  1995.  Public Policies and Externalities.  In: Principles Of Environmental And 
Resource Economics: A Guide For Students And Decision-Makers.  Edited by Folmer H., 
Gabel H.L. and H. Opschoor.  Edward Elgar, Aldershot, UK.   
 
Randhir T.O. and J.G. Lee. 1997. Economic and Water Quality Impacts of Reducing 
Nitrogen and Pesticide Use in Agriculture. Agricultural and Resource Economics, 39-51. 
 
Rekhow K.H. and C. Stow.  1994.  Ecological Impacts of Excess Nutrients in the 
Environment: Issues, Management, and Decision Making.  In Economic Issues 
Associated With Nutrient Management Policy:  Proceedings of a Regional Workshop.  
Southern Rural Development Center and Farm Foundation. 
 



 

 124

Ribaudo M. 2001.  Nonpoint Source Pollution Control Policy in USA.  In: Shortle J.S. 
and D.G. Abler (eds.).  Environmental Policies for Agricultural Pollution Control.  CABI 
Publishing, New York 
 
Ribaudo M.  1989.  Water Quality Benefits From The Conservation Reserve Program.  
Agricultural Economic Report No. 606. Economic Research Service, USDA, Washington 
DC, February 1989.   
 
Ribaudo M.O., Horan R.D., and M.E. Smith.  1999.  Economics Of Water Quality 
Protection From Nonpoint Sources: Theory And Practice. Agricultural Economic Report 
Number 782. USDA. http://www.ers.usda.gov/publications/aer782/ (last accessed 
September 19, 2003) 
 
Roberts M.J. and M. Spence.  1976.  Effluent Charges and Licenses under Uncertainty.  
Journal of Public Economics. April/May, 193 - 208 
 
Roberts R.K and E.O. Heady. 1982. Fertilizer Demand Functions for Specific Nutrients 
Applied to Three Major US Crops.  Western Journal of Agricultural Economics, (7), 265 
–277 
 
Roosen J. and D. Hennessy. 2001. Capturing Experts’ Uncertainty in Welfare Analysis: 
An Application to Organophosphate Use Regulation in US Apple Production.  American 
Journal of Agricultural Economics, 83(1), 166-182 
 
Russell C.S. 1986.  A Note On The Efficiency Ranking Of Two Second-Best Policy 
Instruments For Pollution Control.  Journal of environmental economics and 
management 13: 13-17 
 
Russell C.S. and W.J. Vaughan 1982, The National Recreational Fishing Benefits of 
Water Pollution Control.  Journal of Environmental Economics and Management, 9: 328 
– 354.   
 
Russell G. and T. Moriak. 1970.  The Demand For Fertilizer, 1949 – 64: An Analysis of 
Coefficients from Periodic Cross Sections.  Agricultural Economic Research, Vol. 22, 
No. 2, April  
 
Salami H., Alavalapati J.R.R. and T.S. Veeman.  1998.  Effects Of Technical Change In 
The Iranian Agriculture: A Computable General Equilibrium Analysis.  Journal of 
economic development, 23 (2). 
 
Sato K. 1967. A Two-Level Constant-Elasticity of Substitution Production Function.  
Review of Economic Studies, 34, 210-218. 
 
Schimmelpfennig D.E. and G.W. Norton. 2003. What is the value of Agricultural 
Economic Research? American Journal of Agricultural Economics, 85(1) 
 



 

 125

Schlapfer F. and J.D. Erickson.  2001.  A Biotic Control Perspective on Nitrate 
Contamination of Groundwater from Agricultural Production.  Agricultural and Resource 
Economics Review, 30/2, (October), 113 - 126 
 
Schleich J. and D. White.  1997. Cost Minimization of Nutrient Reduction in Watershed 
Management Using Linear Programming.  Journal of American Water Resources 
Association, Vol. 33, No. 1 
 
Schmutzler A. and L. Goulder. 1997.  The Choice Between Emission Taxes And Output 
Taxes Under Imperfect Monitoring.  Journal Of Environmental Economics And 
Management, 32, 51 – 64 
 
Schwabe K.A. 2001.  Nonpoint Source Pollution, Uniform Control Strategies, and the 
Neuse River Basin.  Review of Agricultural Economics, 23(2), 352-369 
 
Segerson, K. 1988. Uncertainty and Incentives for Nonpoint Pollution Control. Journal of 
Environmental Economics and Management 15:87-98 
 
Shortle J.S.  1984.  The Use Of Estimated Pollution Flows In Agricultural Pollution 
Control Policy: Implications For Abatement And Policy Instruments.  NJARE, October, 
p. 277 - 285 
 
Shortle J.S. and D.G. Abler. 1995. Incentives for Nonpoint Pollution Control.  In: Dosi C. 
and T. Tomasi (eds.). 1994.  Nonpoint Source Pollution Regulation: Issues and Analysis.  
Kluwer Academic Publishers, Boston, MA. 
 
Shortle J. S. and D.  Abler.  2001.  Agriculture and Water Quality: the Issues.  In: 
Environmental Policies for Agricultural Pollution Control/ Shortle J. S. and D. Abler 
(eds.) CABI Publishing, Oxon (UK), NY (USA). 

Shortle J.S. and J.W. Dunn 1986.  The Relative Efficiency of Agricultural Source Water 
Pollution of Agricultural Source Water Pollution Control.  American Journal of 
Agricultural Economics, August  
 
Shortle J. S. and R. D. Horan.  2001.  The Economics of Non-Point Pollution Control.  
Journal of Economic Surveys, 15(3). 

Shortle, J.S., R.D. Horan, and D.G. Abler. 1998. Research Issues in Nonpoint Pollution 
Control, Environmental and Resource Economics 11(3/4):571-585. 
 
Shortle, J.S., and A. Laughland. Impacts of Taxes to reduce Agrichemical Use when 
Farm Policy is Endogenous. Journal of Agricultural Economics 45(1) (1994), pp. 3-14 
 
Sims J.T. and F.J. Coale. 2002. Solution to Nitrogen Management Problem in the 
Chesapeake Bay Watershed, USA In Agriculture, Hydrology and Water Quality, CAO 
International 
 



 

 126

Sinclair-Desgagne B. and E. Gozlan. 2003. A Theory Of Environmental Risk Disclosure. 
Journal of Environmental Economics and Management, 45, 377 – 393 
 
Slunge D. and T. Sterner.  2001. Implementation of Policy Instruments for Chlorinated 
Solvents: A Comparison of Design Standards, Bans, and Taxes to Phase Out 
Trichloroethylene.  Discussion paper, Resources for Future, 
 http://www.rff.org/disc_papers/PDF_files/0132.pdf (last accessed August 10, 2003) 
 
Srivastava A.  2002.  Computational Methods In Statistics.  
http://calais.stat.fsu.edu/~anuj/PDF-files/STA5106-f-02/book4.pdf  (last accessed June 
12, 2003) 

Stavins R. N. 1996.  Correlated Uncertainties and Policy Instrument Choice.  Journal of 
Environmental Economics and Management, 30: 218 – 232. 

Sunding D. and D. Zilberman. 2000.  The Agricultural Innovation Process: Research and 
Technology Adoption in a Changing Agricultural Sector.  
http://www.are.berkeley.edu/%7Ezilber/innovationchptr.pdf (last accessed November 10, 
2003) 
 
Susquehanna River Basin (SRB) Commission.   1998.  Information Sheet.  Susquehanna 
River Basin. Everyone Lives in a Watershed.  
http://www.srbc.net/docs/EveryoneLives.pdf (last accessed September 5, 2003) 
 
Susquehanna River Basin Commission (SRBC). 2003a. Information Sheet. Determining 
TMDL in the STB.  http://www.srbc.net/docs/TMDL-Fact-Sheet.pdf (last accessed 
September 5, 2003) 
 
SRB Commission 2003b.  Protecting The Chesapeake Bay.  
http://www.srbc.net/docs/bay.htm (last accessed September 5, 2003) 
 
Teigen L.D. and F. Singer. 1992.  Weather in US Agriculture: Monthly Temperature and 
Precipitation by State and Farm Production Region, 1950-90.  USDA, ERS, Statistical 
Bulletin # 834.  
 
Thirtle C.  1985.  Accounting for Increasing Land-Labor Ratios in Developed Country 
Agriculture, Journal of Agricultural Economics, 36, 161-169, 1985. 
 
Thirtle C., Townsend R. and J. van Zyl.  1995.  Testing the Induced Innovation 
Hypothesis in South African Agriculture (An Error Correction Approach).  Office of the 
Director, Agriculture and Natural Resources Department, World Bank.  
http://www.worldbank.org/html/dec/Publications/Workpapers/wps1547-abstract.html 
(last accessed August 15, 2003)   
 
Tsai K. and J.S. Shortle. 1998. Optimal differentiation of tax rates and base definition in 
nonpoint pollution control. Working Paper, Department of Environmental Economics 
and Rural Sociology, PSU 



 

 127

 
US DA. 2003. Farm Income and Costs: Commodity Costs and Returns. 
http://www.ers.usda.gov/Briefing/FarmIncome/costsandreturns.htm  
 
US EPA. 1985.  Water Quality Assessment: A Screening Procedure for Toxic and 
Conventional Pollutants in Surface and Ground Water, Part1 and 2.  EPA/600/6-85/002a.  
 
US EPA.  2003a. Water Permitting 101.  http://www.epa.gov/npdes/pubs/101pape.pdf 
(last accessed August 15, 2003)   
 
US EPA. 2003b. Nonpoint Source Pointers.  http://www.epa.gov/OWOW/NPS/facts/ 
(last accessed September 15, 2003)   
 
US GS.  2000.  SPARROW Surface Water-Quality Modeling.  
http://water.usgs.gov/nawqa/sparrow/intro/intro.html (last modified March 30, 2000; last 
accessed Feb. 2003); http://water.usgs.gov/nawqa/sparrow/wrr97/results.html (last 
modified March 30, 2000; last accessed Feb. 2003) 
 
Varian H.R. 1992. Microeconomic Analysis.  WW Norton and Company, NY 
 
Vatn A., Bakken L.R., Lundeby H., Romstad E., Rostad P. and A. Vold.  1997. 
Regulating Nonpoint Source Pollution from Agriculture: an Integrated Modeling 
Analysis.  European Review of Agricultural Economics, 24 (2), 207 – 229.  
 
Veith T.L.  2003.  Agricultural BMP Placement for Cost-Effective Pollution Control at 
the Watershed Level.  PhD Dissertation in Biological Systems Engineering.  Virginia 
Polytechnic Institute.   
http://scholar.lib.vt.edu/theses/available/etd-04252002-132437/unrestricted/etd.PDF     
 
Vroomen H. and B. Larson.  1991.  A Direct Approach for Estimating Nitrogen, 
Phosphorus, and Land Demands at the regional Level.  USDA, ERS, Technical Bulletin 
No. 1786 
 
Weinberg M. and C.L. King. 1996.  Uncoordinated Agricultural Policy Making: an 
Application to Irrigated Agriculture in the West.  American Journal of Agricultural 
Economics, 78, 65-78 
 
Weitzman M. L.  1974.  Prices vs. Quantities.  The Review of Economic Studies, 41(4). 

Woodward R.T. and R.C. Bishop 1997. How to Decide When Experts Disagree: 
Uncertainty-Based Choice Rules in Environmental Policy.  Land Economics, November, 
73(4): 492-507 
 
Wu, J.  2000.  Input Substitution and Pollution Control Under Uncertainty and Firm 
Heterogeneity.   Journal of Public Economic Theory, 2(2), 273 – 288 
 



 

 128

Wu and Babcock 2001.  Spatial Heterogeneity and the Choice of Instruments to Control 
Nonpoint Pollution.  Environmental And Resource Economics, 18, 173 – 192 
 
Xepapadeas, A. 1994. Controlling Environmental Externalities: Observability and 
Optimal Policy Rules. In T. Tomasi and C. Dorsi, eds., Nonpoint Source Pollution 
Regulation: Issues and Policy Analysis. Dordrecht: Kluwer Academic Publishers 
 
Yulianti J.S., Lence B.J., Johnson G.V., and A.K. Takyi.  1999. Nonpoint Source Water 
Quality Management Under Input Information Uncertainty.  Journal of Environmental 
Management, 55, 199 – 217 
 
Zilicz T.  1995.  Goals, Principles, And Constraints In Environmental Policies.  In: 
Principles of Environmental and Resource Economics: A guide for students and decision-
makers.  Edited by Folmer H., Gabel H.L. and H. Opschoor.  Edward Elgar, Aldershot, 
UK.    
 



 

 129

Appendix A.  Graphs and Data Tables 
 

Figure A1.  Structure of the Simulation Model 
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Figure A2. Watersheds in the Susquehanna River Basin in Pennsylvania [Horan et al 2002a] 
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Table A1. Nitrogen pollution Load by Watershed 

Watershed Average NPS 
load 
(ton) 

Average PS 
load 
(ton) 

Average total 
load 
(ton) 

Rank based 
on 

total load 
202 3,500 167 3,667 3
204 5,694 3,231 8,926 1
207 4,314 1,142 5,456 2
214 1,499 72 1,571 7
215 1,981 77 2,057 6

223* 1,492 29 1,521 8
301 1,367 148 1,515 9
302 1,607 726 2,333 4
401 1,231 74 1,305 11
402 1,987 211 2,198 5

404* 1,271 95 1,365 10
410* 459 68 527 12

* watersheds in italic are dropped from the analysis  
Source: ArcGWLF model output reported by Evans [2002-2003] 
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Table A2. Estimates of Damage Costs from Water Pollution 

Damage Cost Estimates Comments Source 
$2 to 8 billions annually Annual costs of soil 

erosion 
Ribaudo et. 
al.   1999 

WTP for improvement of water to boatable 
conditions is $93; to fishable conditions - 
$70, to swimmable conditions - $78.  Total 
household average WTP for improving 
national water quality to the standards set 
by Clean Water Act is $242. 

 Carson and 
Mitchell 
1993 

$1.8 - $8.7 billions with best guess of $4.6 
billions (1978 dollars / year) 

Total recreational 
damages from all forms 
of water pollution 

Freeman 
1982 

$300 - $966 millions recreational fishing 
benefits from controlling 
water pollution 

Russell 
and 
Vaughan 
1982 

$9 billions per year Annual damage due to 
runoff of agricultural 
chemicals to surface 
water only (lakes, rivers).  
National data  

Ribaudo  
1989 

D(t) = (180.75 Z(t)0.352 – 146.63) h 
where h represents the number of 
households with water supply from the local 
groundwater, t is time of violation (from 
zero to 100, where t = 0 denotes current 
year).  

Damage function for 
violation of groundwater 
nitrate standard (10 mg/l)  
 

Poe 1998 

 
 
 
Table A3. Baseline Corn and Agricultural Input Prices 

 Price, 
$ 

Data Source  

Corn, Metric Ton, py 76.8 Average value for 1996 – 2000;  PA Agricultural 
Statistics [2003] 

Nitrogen Fertilizer, 
Metric Ton, ρ 

485.0 I assume that all fertilizer costs are attributed to 
nitrogen; PA Corn Budget [PSU 2000] 

Land, Ha, r 161.6 ERS Cost and Return Survey [2003] 
Composite mechanical 
input, wM 

1.0 The units of measurements of the input are selected 
to have the price of each unit equal one 
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Table A4. Baseline Data for Each Watershed 

Watershed/ 
Characteristics 

202 204 207 214 215 302 301 
and 
401 

402 

y0 (103 ton) 602.1 1940.4 790.9 389.5 512.3 411.3 292.0 246.8 
M0 (103 units, 
price of each 
unit is one)  

31891.9 102784.3 41892.9 20632.5 27138.1 21787.9 15469.8 13075.6 

n0, ton 11521.7 37133.2 15134.8 7454.0 9804.3 7871.4 5588.8 4723.9 
l0, ha 54085.7 174312.3 71046.3 34990.8 46023.6 36950.1 26235.3 22175.0 
Intercept in the 
quadratic 
agricultural 
profit  π0 (106) 

14.3   46.2  18.8 9.3 12.2 9.8 7.0   5.9 

Load regression 
coefficient φ1 
(10-5) 

646.0 486.9 205.2 552.2 386.5 646.0 92.4 429.5 

Load regression 
coefficient φ2 
(10-12) 

86017.5  8208.6 9212.0 54649.3 7425.0 86017.5  548.9  6905.0 

Load regression 
coefficient φ3 
(102) 

13620.6 52305.1 17480.5 9221.0 11067.8 13620.6 4642.4 12174.3 

Calibration 
coefficient A 
(10-8) 

3.3 9.1 26.1 1.3 8.6 2.3 326.9 42.4 

Calibration 
coefficient µ  

89542.7   101832.2 89663.2 115304.7 115304.7 88896.5 88896.5 88907.4 

Precipitation 
(zi), mm 

817.5 929.7 818.6 1052.7 1052.7 811.6 811.6 811.7 

NPS load, MT 3499.8 5694.2 4314.1 1499.2 1980.6 1607.0 2597.8 1987.1 
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Table A5. Expenditures in Corn Production ($/ton)* 

                   Item 1996 1997 1998 1999 2000** 5-years average 

      

Biological  Input       

Fertilizers        
Fertilizer, lime and gypsum 15.6 13.1 11.3 10.9 10.7 12.3 
soil conditioners 0.2 0.1 0.1 0.2 0.1 0.2 
Manure 0.8 0.6 0.6 0.6 0.5 0.6 
Total Fertilizers 16.6 13.9 12.0 11.6 11.4 13.1 

      
Land 21.7 20.6 20.4 20.8 20.7 20.8 

Total Biological Input 38.3 34.5 32.4 32.4 32.0 33.9 
Share Of Land In Biological Input (b1) 0.6 0.6 0.6 0.6 0.6 0.6 

Share Of Biological Input In Total 
Expenditures  (a1) 

0.3 0.3 0.3 0.3 0.3 0.3 

      

Mechanical Input       
Labor       
Hired 1.4 1.4 1.3 1.4 1.5 1.4 
Unpaid 12.9 11.9 11.6 12.0 12.2 12.1 
Total Labor 14.4 13.2 12.9 13.5 13.7 13.5 
      
Capital       
seed 9.5 9.1 8.8 9.1 9.0 9.1 
capital recovery of machinery and equipment 23.3 21.5 21.8 22.2 22.6 22.3 
taxes and insurance 2.4 2.1 2.0 2.0 2.0 2.1 
repair 5.6 5.1 5.2 5.3 5.4 5.3 
custom operations 3.5 3.3 3.1 3.2 3.0 3.2 
interest 1.3 1.2 1.0 1.0 1.3 1.2 
general farm overhead 4.8 5.0 4.5 4.3 4.3 4.6 
Total Capital 50.5 47.5 46.5 47.1 47.6 47.8 
      
Chemicals        
Chemicals  9.9 8.6 8.2 8.6 8.6 8.8 
fuel, lube electricity 7.8 7.2 6.3 6.6 8.3 7.2 
Total chemicals 17.8 15.9 14.5 15.2 16.8 16.0 

Total Mechanical 82.6 76.5 73.9 75.8 78.1 77.4 
Share of Mechanical Input in Total Costs (1 – 

a1) 
0.7 0.7 0.7 0.7 0.7 0.7 

Total Costs 120.9 111.0 106.4 108.1 110.2 111.3 
* The data in the USDA report are presented per planted acre.  In our model, per bushel expenditures are 
necessary, so the USDA data were modified given per acre yield.  
** The data for 2000 are preliminary. 
Source: USDA Costs and Returns Survey [USDA 2001] 
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Table A6. Nitrogen and Land Demand Elasticities Reported by Different Studies. 

Region Nitrogen, own price Land, 
own price 

Nitrogen, 
cross-price 

Source 

Illinois, 
Indiana, and 
Ohio 

-0.22  0.432 Hertel et. al. 
1996 

USA  Short-run, static: 
-0.54 
Short-run, dynamic: 
-0.32 to –0.41 
Long-run:  
-0.57 to –1.08 

  Abebe 1989  

USA (crops) -1.148   Roberts and 
Heady 1982  

USA -0.9   Gunjal et. al. 
1980 

USA Short-run: 
- 0.23; 
Long-run: 
- 0.48 

 Short-run: 0.9; 
Long-run: 
1.83 

Denbaly 1991  

North-East 
USA 

-0.6 
-0.449 

 0.018 
-1.691 

Heady and Yeh 
1959 

USA Nonrandom static 
model:  
-0.693 
 
Nonrandom dynamic 
model: 
-0.22 
 
Random model, 
short run: 
-0.231 
 
Random model, 
long-run:  
-0.591 

  Russell and 
Moriak 1970 

Illinois 
Indiana 
Iowa  
Missouri 
Ohio 

-0.121 
-0.386 
-0.409 
-0.871 
0.616 

-0.024 
-0.011 
-0.023 
-0.006 
-0.007 

-0.005 
-0.006 
-0.003 
-0.003 
-0.015 

Vroomen and 
Larson  1991 
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Table A7. Characteristics of Random Parameters 

Variable Notation Distribution Characteristics 
Own price elasticity of nitrogen demand εN Uniform Mean = -0.5 

Variance = 0.05 
SD = 0.23 
Coeff. of Var. = -0.46 
Interval = [-0.9,-0.1] 
Entropy = -0.22 

Own price elasticity of land demand εL Uniform Mean = -0.32 
Variance = 0.01 
SD = 0.10 
Coeff. of Var. = -0.33 
Interval = [-0.5,-0.14] 
Entropy = -1.02 

Cross-price elasticity of nitrogen demand εNL Uniform Mean =0.40  
Variance = 0.05 
SD = 0.22 
Coeff. of Var. = 0.55 
Interval = [0.02, 0.8] 
Entropy = -0.27 

Land and fertilizer substitution elasticity σB Uniform Mean = 0.7 
Variance = 0.1  
SD = 0.3 
Coeff. of Var. = 0.4 
Interval = [0.2, 1.2] 
Entropy = 0.076 

Substitution elasticity between composite 
mechanical and biological inputs 

σα Uniform Mean = 0.5 
Variance = 0.05  
SD = 0.23 
Coeff. of Var. = 0.46 
Interval = [0.1, 0.9] 
Entropy = -0.22 

Price elasticity of land supply εLS Uniform Mean = 0.5 
Variance = 0.08 
SD = 0.28 
Coeff. of Var. = 0.57 
Interval = [0.01,0.99] 
Entropy = -0.02 

Damage exponent  τ Uniform Mean = 2 
Variance = 0.33 
SD = 0.58 
Coeff. of Var. = 0.29 
Interval = [1, 3] 
Entropy = 0.69 

Damage Coefficient ψ Uniform Mean = 1.2 10-4 
Variance = 2.1 10-9 

SD = 4.6 10-5 

Coeff. of Var. = 0.38 
Interval = 
 [4 10-5, 2 10-4] 
Entropy = -8.74 
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Transport coefficient for watershed 202  ω1 Normal / Uniform For Normal 
Distribution: 
Mean = 0.710 
Variance = 0.110 
SD = 0.332 
Coeff. of Var. = 
0.467 
Entropy = -0.801 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

Transport coefficient for watershed 204 ω2 Normal / Uniform For Normal 
Distribution: 
Mean = 0.730 
Variance = 0.110 
SD = 0.338 
Coeff. of Var. = 
0.462 
Interval = [0, 1] 
Entropy = -0.775 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

Transport coefficient for watershed 207 ω3 Normal / Uniform For Normal 
Distribution: 
Mean = 0.580 
Variance = 0.160 
SD = 0.400 
Coeff. of Var. = 
0.688 
Entropy = -0.430 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 
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Transport coefficient for watershed 214 ω4 Normal / Uniform For Normal 
Distribution: 
Mean = 0.680 
Variance = 0.130 
SD = 0.355 
Coeff. of Var. = 
0.519 
Entropy = -0.670 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

Transport coefficient for watershed 215 ω5 Normal / Uniform For Normal 
Distribution: 
Mean = 0.630 
Variance = 0.070 
SD = 0.261 
Coeff. of Var. = 
0.417 
Entropy = -1.269 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

Transport coefficient for watershed 302 ω6 Normal / Uniform For Normal 
Distribution: 
Mean = 0.610 
Variance = 0.070 
SD = 0.265 
Coeff. of Var. = 
0.433 
Entropy = -1.240 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 
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Transport coefficient for combined 
watershed 301 and 401 

ω7 Normal / Uniform For Normal 
Distribution: 
Mean = 0.660 
Variance = 0.070 
SD = 0.265 
Coeff. of Var. = 
0.401 
Entropy = -1.240 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

Transport coefficient for watershed 402  ω8 Normal / Uniform For Normal 
Distribution: 
Mean = 0.560 
Variance = 0.140 
SD = 0.370 
Coeff. of Var. = 
0.661 
Entropy = -0.572 
For Uniform 
Distribution: 
Mean = 0.5 
Variance = 0.083 
SD = 0.288 
Coeff. of Var. = 
0.576 
Interval =  
[0.001, 0.999] 
Entropy = -0.002 

 
 
 
Table A8. Approximation of Ex Ante Policy Performance With Monte Carlo Procedure 

Sample size SS, Quantity, 
ex ante, 106 

Difference (%) SS, Price, ex 
ante, 106 

Difference (%)

100 437.1 473.0 
200 426.4 2.4 461.5 2.4
400 446.9 4.8 466.1 1.0
800 434.5 2.8 450.6 3.3
1500 443.5 2.1 458.4 1.7
3000 447.9 1.0 454.9 0.8
5000 450.1 0.5 456.4 0.3
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Appendix B.  Elasticity of input demand for CES function 
 

From cost-minimization problem (42), the expressions for input demand are  
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Given the input demand equations and the definition (43), the one can express the input demand elasticities as functions of substitution 

and distribution parameters (ξ, α, a1, a2, b1, and b2), and factor prices (wM, r, and ρ).   
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The elasticity values are found given the baseline input prices r = r0, wM = wM0, and ρ = ρ0.
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